dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Mineralogical and microstructural investigations of fractures in Permian z2 potash seam and surrounding salt rocks
VerfasserIn Michael Mertineit, Wiebke Grewe, Michael Schramm, Jörg Hammer, Hartmut Blanke, Mario Patzschke
Konferenz EGU General Assembly 2017
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 19 (2017)
Datensatznummer 250148956
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2017-13263.pdf
 
Zusammenfassung
Fractures occur locally in the z2 potash seam (Kaliflöz Staßfurt). Most of them extend several centimeter to meter into the surrounding salt rocks. The fractures are distributed on all levels in an extremely deformed area of the Morsleben salt mine, Northern Germany. The sampling site is located within a NW-SE trending synclinal structure, which was reverse folded (Behlau & Mingerzahn 2001). The samples were taken between the -195 m and - 305 m level at the field of Marie shaft. In this area, more than 200 healed fractures were mapped. Most of them show opening widths of only a few millimeters to rarely 10 cm. The fractures in rock salt are filled with basically polyhalite, halite and carnallite. In the potash seam, the fractures are filled with kainite, halite and minor amounts of carnallite and polyhalite. In some cases the fracture infill changes depending on the type of surrounding rocks. There are two dominant orientations of the fractures, which can be interpreted as a conjugated system. The main orientation is NE-SW trending, the dip angles are steep (ca. 70°, dip direction NW and SE, respectively). Subsequent deformation of the filled fractures is documented by a strong grain shape fabric of kainite, undulatory extinction and subgrain formation in kainite, and several mineral transformations. Subgrain formation in halite occurred in both, the fracture infill and the surrounding salt rocks. The results correlate in parts with investigations which were carried out at the close-by rock salt mine Braunschweig-Lüneburg (Horn et al. 2016). The development of the fractures occurred during compression of clayey salt rocks. However, the results are only partly comparable due to different properties (composition, impurities) of the investigated stratigraphic units. Further investigations will focus on detailed microstructural and geochemical analyses of the fracture infill and surrounding salt rocks. Age dating of suitable minerals, e.g. polyhalite (Leitner et al. 2013), could help to reconstruct the formation conditions. Behlau, J. & Mingerzahn, G. 2001. Geological and tectonic investigations in the former Morsleben salt mine (Germany) as a basis for the safety assessment of a radioactive waste repository. Engineering Geology 61, 83-97. Leitner, C., Neubauer, F., Genser, J., Borojevic-Sostaric, S. & Rantitsch, G. 2013. 40Ar/39Ar ages of crystallization and recrystallization of rock-forming polyhalite in Alpine rocksalt deposits. In: Jourdan, F., Mark, D.F. & Verati, C. (eds.): Advances in 40Ar/39Ar dating from archaeology to planetary sciences. - Geological Society of London, Special Publications 378, 207-224. Horn, M., Barnasch, J., Bode, J., Stanek, K. & Zeibig, S. 2016. Erscheinungsformen der bruchlosen Deformation und Bruchdeformation im Salinar des Steinsalzbergwerkes Braunschweig-Lüneburg. Kali und Steinsalz 02/2016, 30-42.