dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Simulating, Measuring, and Parameterizing Turbulent Boundary Layer Flow over Multi-Scale, Fractal Canopies
VerfasserIn Charles Meneveau, Jason Graham, Kunlun Bai, Joseph Katz
Konferenz EGU General Assembly 2010
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 12 (2010)
Datensatznummer 250036370
 
Zusammenfassung
In many regions the atmospheric surface layer is affected substantially by vegetation canopies. Most previous work has focused on effects of vegetated terrain characterized by a single length scale, e.g. a single obstruction of a particular size, or canopies consisting of plants, often modeled using a prescribed leaf-area density distribution with a characteristic dominant scale. It is well known, however, that typical flow obstructions such as canopies are characterized by a wide range of length scales, branches, sub-branches, etc.. Yet, it is not known how to parameterize the effects of such multi-scale objects on the lower atmospheric dynamics. This work aims to study boundary layer flow over fractal, tree-like shapes. Fractals provide convenient idealizations of the inherently multi-scale character of vegetation geometries, within certain ranges of scales. We report on Large Eddy Simulations whose results are compared with a ongoing experiments that also aim at understanding drag forces acting on fractal trees. The experiments are performed in a water tunnel facility that uses optically index-matched fluid. This enables to access the full 3-D flow volume with Particle-Image-Velocimetry. The measurements complement computer simulations using LES, and the aim is to use the results to develop downscaling parameterizations for unresolved branch drag forces with a technique called Renormalized Numerical Simulation (RNS). This research is supported by the National Science Foundation (IGERT Project # 0801471 and ATM grant # 0621396).