|
Titel |
Above- and below-ground net primary productivity across ten Amazonian forests on contrasting soils |
VerfasserIn |
L. E. O. C. Aragão, Y. Malhi, D. B. Metcalfe, J. E. Silva-Espejo, E. Jimenez, D. Navarrete, S. Almeida, A. C. L. Costa, N. Salinas, O. L. Phillips, L. O. Anderson, E. Álvarez, T. R. Baker, P. H. Goncalvez, J. Huamán-Ovalle, M. Mamani-Solórzano, P. Meir, A. Monteagudo, S. Patiño, M. C. Peñuela, A. Prieto, C. A. Quesada, A. Rozas-Dávila, A. Rudas, J. A. Jr. Silva, R. Vásquez |
Medientyp |
Artikel
|
Sprache |
Englisch
|
ISSN |
1726-4170
|
Digitales Dokument |
URL |
Erschienen |
In: Biogeosciences ; 6, no. 12 ; Nr. 6, no. 12 (2009-12-01), S.2759-2778 |
Datensatznummer |
250004212
|
Publikation (Nr.) |
copernicus.org/bg-6-2759-2009.pdf |
|
|
|
Zusammenfassung |
The net primary productivity (NPP) of tropical forests is one of the most
important and least quantified components of the global carbon cycle. Most
relevant studies have focused particularly on the quantification of the
above-ground coarse wood productivity, and little is known about the carbon
fluxes involved in other elements of the NPP, the partitioning of total NPP
between its above- and below-ground components and the main environmental
drivers of these patterns. In this study we quantify the above- and
below-ground NPP of ten Amazonian forests to address two questions: (1) How
do Amazonian forests allocate productivity among its above- and below-ground
components? (2) How do soil and leaf nutrient status and soil texture affect
the productivity of Amazonian forests? Using a standardized methodology to
measure the major elements of productivity, we show that NPP varies between
9.3±1.3 Mg C ha−1 yr−1 (mean±standard error), at a
white sand plot, and 17.0±1.4 Mg C ha−1 yr−1 at a very
fertile Terra Preta site, with an overall average of 12.8±0.9 Mg C ha−1 yr−1.
The studied forests allocate on average 64±3% and 36±3% of the total NPP to the above- and below-ground components,
respectively. The ratio of above-ground and below-ground NPP is almost
invariant with total NPP. Litterfall and fine root production both increase
with total NPP, while stem production shows no overall trend. Total NPP
tends to increase with soil phosphorus and leaf nitrogen status. However,
allocation of NPP to below-ground shows no relationship to soil fertility,
but appears to decrease with the increase of soil clay content. |
|
|
Teil von |
|
|
|
|
|
|