dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Neural network prediction of relativistic electrons at geosynchronous orbit during the storm recovery phase: effects of recurring substorms
VerfasserIn M. Fukata, S. Taguchi, T. Okuzawa, T. Obara
Medientyp Artikel
Sprache Englisch
ISSN 0992-7689
Digitales Dokument URL
Erschienen In: Annales Geophysicae ; 20, no. 7 ; Nr. 20, no. 7, S.947-951
Datensatznummer 250014422
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/angeo-20-947-2002.pdf
 
Zusammenfassung
During the recovery phase of geomagnetic storms, the flux of relativistic (>2 MeV) electrons at geosynchronous orbits is enhanced. This enhancement reaches a level that can cause devastating damage to instruments on satellites. To predict these temporal variations, we have developed neural network models that predict the flux for the period 1–12 h ahead. The electron-flux data obtained during storms, from the Space Environment Monitor on board a Geostationary Meteorological Satellite, were used to construct the model. Various combinations of the input parameters AL, SAL, Dst and SDst were tested (where S denotes the summation from the time of the minimum Dst). It was found that the model, including SAL as one of the input parameters, can provide some measure of relativistic electron-flux prediction at geosynchronous orbit during the recovery phase. We suggest from this result that the relativistic electron-flux enhancement during the recovery phase is associated with recurring substorms after Dst minimum and their accumulation effect.

Key words. Magnetospheric physics (energetic particles, trapped; magnetospheric configuration and dynamics; storms and substorms)
 
Teil von