dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Quantifying denitrification losses from a sub-tropical pasture in Queensland/Australia - use of the 15N gas flux method
VerfasserIn Johannes Friedl, Clemens Scheer, Daniel Warner, Peter Grace
Konferenz EGU General Assembly 2014
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 16 (2014)
Datensatznummer 250090584
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2014-4838.pdf
 
Zusammenfassung
The microbial mediated production of nitrous oxide (N2O) and its reduction to dinitrogen (N2) via denitrification represents a loss of nitrogen (N) from fertilised agro ecosystems to the atmosphere. Although denitrification remains a major uncertainty in estimating N losses from soils, the magnitude of N2 losses and related N2:N2O ratios from soils are largely unknown due to difficulties measuring N2 against a high atmospheric background. In order to address this lack of data, this study investigated the influence of different soil moisture contents on N2 and N2O emissions from a sub-tropical pasture in Queensland/Australia using the 15N gas flux method. Intact soil cores were incubated over 14 days at 80% and 100% water filled pore space (WFPS). Gas samples were taken up to six times per day after application of 15N labelled nitrate, equivalent to 50 kg N ha-1 and analysed for N2 and N2O by isotope ratio mass spectrometry. Fluxes were calculated assuming non-random 15N distribution in the headspace according to Mulvaney and Kurtz (1984) using the labelled pool of nitrate estimated from N2O measurements (Stevens and Laughlin 2001). The main product of denitrification in both treatments was N2. N2 emissions exceeded N2O emissions by a factor of 1.3 ± 0.3 at 80% WFPS and a factor of 3 ± 0.8 at 100% WFPS. The total amount of N-N2 lost over the incubation period was 13.5±1.0 kg N ha-1 at 80% WFPS and 21.8±1.8 kg ha-1 at 100% WFPS respectively. Over the entire incubation period, N2 emissions remained elevated at 100% WFPS, showing high variation between soil cores, while related N2O emissions decreased. At 80% WFPS, N2 emissions increased constantly over time showing significantly higher values after day five. At the same time, N2O fluxes declined. Consequently, N2:N2O ratios rose over the incubation period in both treatments. Overall denitrification rates and related N2:N2O ratios were higher at 100% WFPS compared to 80% WFPS, confirming WFPS as a major driver of denitrification. This study highlights denitrification as a major pathway of N loss for sub-tropical pasture systems with a substantial amount of applied fertiliser lost as N2 at high WFPS. The 15N gas flux method proved an effective tool in assessing N losses from fertilised soils. However, its suitability to determine N2 fluxes from soils with lower denitrification rates needs to be confirmed in future studies. The high variation between soil cores emphasises the need for field measurements with a high spatial and temporal resolution in order to capture the dynamics of N2 emissions. Mulvaney, R. L. and L. T. Kurtz. 1984. "Evolution of Dinitrogen and Nitrous Oxide from Nitrogen-15 Fertilized Soil Cores Subjected to Wetting and Drying Cycles1." Soil Sci. Soc. Am. J. 48 (3): 596-602. https://www.soils.org/publications/sssaj/abstracts/48/3/596. doi: 10.2136/sssaj1984.03615995004800030026x. Stevens, R. J. and R. J. Laughlin. 2001. "Lowering the detection limit for dinitrogen using the enrichment of nitrous oxide." Soil Biology and Biochemistry 33 (9): 1287-1289. http://www.sciencedirect.com/science/article/pii/S0038071701000360. doi: http://dx.doi.org/10.1016/S0038-0717(01)00036-0.