dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Sensitivity of the shortwave to longwave ratio in contrail radiative forcing calculations with different radiation schemes
VerfasserIn Michael Ponater, Simone Dietmüller, Christine Frömming
Konferenz EGU General Assembly 2013
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 15 (2013)
Datensatznummer 250080225
 
Zusammenfassung
Contrail radiative forcing is difficult to obtain, even if contrail parameters like coverage, ice water content, crystal size etc. are known. A substantial respective uncertainty has been documented in literature. One key problem is the considerable amount of cancellation between the positive (warming) component from the contrails' greenhouse effect and the negative (cooling) component from backscattering of solar irradiance. Furthermore, the longwave/shortwave cancellation depends on ambient parameters like temperature, co-existing natural clouds, and surface albedo. High demands are set for any radiative transfer model aiming at reliable results of the net radiative forcing. Climate models are optimally suited to provide a representation of the required variety of ambient parameters for a climatological estimate of contrail radiative forcing. However, comprehensive global climate models use simplified radiative transfer schemes for reasons of computational economy. Hence, a dedicated test of these schemes is required. We present a comparison of contrail radiative forcing estimates from two global climate models with different radiation schemes. The first estimate results from the ECHAM4 model that has been frequently used over the last ten years for contrail climate impact calculations. The second estimate originates from the more recent ECHAM5/MESSy Atmospheric Chemistry (EMAC) model that is used in current and future studies. Use is made of the so-called "Myhre benchmark test" with specified contrail parameters. Particular emphasis is given to longwave/shortwave ratios for different seasons and to daytime/nighttime differences.