dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Uranium in surface soils: an easy-and-quick assay combining X-ray diffraction and fluorescence qualitative data
VerfasserIn M. O. Figueiredo, T. P. Silva, M. J. Batista, J. Leote, M. L. Ferreira, V. Limpo
Konferenz EGU General Assembly 2009
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 11 (2009)
Datensatznummer 250023762
 
Zusammenfassung
Portugal has been a uranium-producer since the beginning of the last century. The uranium-rich area of Alto Alentejo, East-central Portugal, was identified more than fifty years ago [1]. Almost all the uranium-bearing mineralization occurs in schistose rocks of the contact metamorphic aureole produced by intrusion of the Hercynian monzonitic granite of Alto Alentejo into the pre-Ordovitian schist-greywacke complex forming deposits of vein and dissemination type. The Nisa uranium-reservoir, situated at the sharp border of a large and arch shaped granite pluton, was identified in 1957 [2] but its exploitation was considered economically impracticable until recently. However, its existence and the accumulated detritus of these prospect efforts are a concern for local populations [3]. A study of the near-surface soils close to the Nisa reservoir was therefore undertaken to assess the uranium retention by adsorption on clay components under the form of uranyl ions, [UO2]2+ [4-6] and its eventual release into the aquifer groundwater. As an attempt to very quickly appraise the presence of uranium in as-collected near-surface sediment samples a combination of laboratory X-ray techniques was designed: X-ray diffraction (XRD) to identify the mineral phases and roughly estimate its relative proportion plus X-ray fluorescence spectrometry in wavelength dispersive mode (XRF-WDS) to ascertain the presence of uranium and tentatively evaluate its content by comparison with selected chemical components of the soil. A description of the experimental methodology adopted for the implemented easy-and-quick uranium assay is presented. Obtained results compare quite well to the data of certified time-consuming analytical tests of uranium in those soil samples. [1] L. Pilar (1966) Conditions of formation of Nisa uranium deposit (in Portuguese). Comunic. Serv. Geol. Portugal, tomo L, 50-85. [2] C. Gonçalves & J.V. Teixeira Lopes (1971) Uranium deposit of Nisa: geological aspects of its discovery and valorisation (in Portuguese). Internal Rept., JEN, 20 pp. [3] http://www.naturtejo.com [4] J.A. Davis et al. (2006) Processes affecting transport of uranium in a suboxic aquifer. Phys. Chem. of the Earth 31, 548-555. [5] Y. Arai et al. (2007) Spectroscopic evidence for uranium bearing precipitates in Vadose zone sediments at the Hanford 300-Area site. Environ. Sci. Technol. 41, 4633-4639. [6] A. Kremleva, S. Krüger & N. Rösch (2008) Density functional model studies of uranyl adsorption on (001) surfaces of kaolinite. Langmuir 24, 9515-9524.