dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Taal volcanic hydrothermal system (Philippines) inferred by electromagnetic and other geophysical methods
VerfasserIn Jacques Zlotnicki, Jean Paul Toutain, Yoichi Sasai, Egardo Villacorte, Alain Bernard, Frederic Fauquet, Toshiyatsu Nagao
Konferenz EGU General Assembly 2010
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 12 (2010)
Datensatznummer 250040506
 
Zusammenfassung
On volcanoes which display hydrothermal/magmatic unrests, Electromagnetic (EM) methods can be combined with geochemical (GC) and thermal methods. The integration of these methods allows to image in detail hydrothermal systems, to find out possible scenarios of volcanic unrest, and to monitor the on-going activity with knowledge on the sources of heat, gas and fluid transfers. Since the 1990’s the volcano shows recurrent periods of seismic activity, ground deformation, hydrothermal activity, and surface activity (geysers). Combined EM and GC methods noticeably contribute to map in detail the hydrothermal system and to analyse the sources of the activity: - Total magnetic field mapping evidences demagnetised zones over the two main areas forming the hydrothermal system (in the northern part of Main crater (MC)). These low magnetized areas are ascribed to thermal sources located at some hundreds metres of depth, - Self-potential surveys, delineate the contours of the fluids-heat transfer, and the northern and southern structural discontinuities enclosing the hydrothermal system, - Ground temperature gradient measurements evidence the distinctive heat transfer modes, from low fluxes related to soil temperature dominated by solar input to extremely high temperature gradients of 1200 °C m-1 or to more related to magmatic fluids. - Ground temperature and surface temperature of central acidic lake calculated by Thermal Aster imaging highlight the location of the most active ground fissures, outcrops and diffuse areas. Higher and larger anomalies are observed in the northern part of MC. A rough estimation of the thermal discharge in the northern part of the volcano gives 17 MW. - CO2 concentrations and fluxes from soil supply inform on fluids origin and on local processes operating along active fractures. Much higher carbon dioxide fluxes at MC sites confirm that the source of Taal activity is presently located in the northern part of the crater. - Heat and fluids release from the hydrothermal system delineate a general NW-SE ellipsoid in the northern part of MC and may be related to a suspected NW-SE fault along which seismicity takes place and dikes are believed to intrude triggering volcanic crises. The northern flank of the volcano is mechanically and hydro thermally reactivated during seismic crises and this sector could be subjected to a flank failure.