dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Risk assessment of atmospheric emissions using machine learning
VerfasserIn G. Cervone, P. Franzese, Y. Ezber, Z. Boybeyi
Medientyp Artikel
Sprache Englisch
ISSN 1561-8633
Digitales Dokument URL
Erschienen In: Natural Hazards and Earth System Science ; 8, no. 5 ; Nr. 8, no. 5 (2008-09-09), S.991-1000
Datensatznummer 250005763
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/nhess-8-991-2008.pdf
 
Zusammenfassung
Supervised and unsupervised machine learning algorithms are used to perform statistical and logical analysis of several transport and dispersion model runs which simulate emissions from a fixed source under different atmospheric conditions.

First, a clustering algorithm is used to automatically group the results of different transport and dispersion simulations according to specific cloud characteristics. Then, a symbolic classification algorithm is employed to find complex non-linear relationships between the meteorological input conditions and each cluster of clouds. The patterns discovered are provided in the form of probabilistic measures of contamination, thus suitable for result interpretation and dissemination.

The learned patterns can be used for quick assessment of the areas at risk and of the fate of potentially hazardous contaminants released in the atmosphere.
 
Teil von