dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Effects of ferrous iron on the precipitation and growth of CaCO3 in slightly basic aqueous solutions, from macro to nanoscale
VerfasserIn Fulvio Di Lorenzo, Alejandro Burgos-Cara, Encarnacion Ruiz-Agudo, Christine V. Putnis, Manuel Prieto
Konferenz EGU General Assembly 2016
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 18 (2016)
Datensatznummer 250130527
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2016-10796.pdf
 
Zusammenfassung
The precipitation of CaCO3 and further growth of calcite has been studied in aqueous solutions containing ferrous iron (Fe2+). Two different types of bulk experiments have been carried out. Nucleation experiments have been conducted at pH 9 with five different CaTOT/FeTOT ratios: 10, 5, 2.5, 1.25 and 0.625. As well, calcite growth experiments have been conducted at pH 8.5 (following the constant composition method) with CaTOT/FeTOT ratios: 100, 50 and 25; this higher dilution partially reduces the impact of inhibition on growth of calcite occurring when CaTOT/FeTOT ≤ 25. Parameters such as the solution pH, [Ca2+], conductivity, solution transmittance (610 nm), and volume added were continuously monitored by a Titrino 905 system (Metrohm, Switzerland). After the experiments, the CaCO3 precipitates were collected, filtered, dried and characterized by powder-XRD, HRTEM, FESEM-EDX, EMPA. Solution composition was determined by ICP-MS. Additionally, in-situ Atomic Force Microscopy (AFM) flow-through growth experiments were conducted in a sealed fluid cell using freshly cleaved natural calcite (Iceland spar). The solution composition in AFM experiments was analogous to the bulk growth experiments. The results of these experiments reveal the significant influence of ferrous iron on nucleation and growth in the CaCO3-H2O system, reflected as well in polymorphic selection in this system.Finally, thermodynamic considerations for the system Ca-Fe-CO2-H2O are discussed that allow the modelling of geochemical processes involving this system, such as geological carbon storage in basaltic rocks.