dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Global sensitivity analysis, probabilistic calibration, and predictive assessment for the data assimilation linked ecosystem carbon model
VerfasserIn C. Safta, D. M. Ricciuto, K. Sargsyan, B. Debusschere, H. N. Najm, M. Williams, P. E. Thornton
Medientyp Artikel
Sprache Englisch
ISSN 1991-959X
Digitales Dokument URL
Erschienen In: Geoscientific Model Development ; 8, no. 7 ; Nr. 8, no. 7 (2015-07-01), S.1899-1918
Datensatznummer 250116445
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/gmd-8-1899-2015.pdf
 
Zusammenfassung
In this paper we propose a probabilistic framework for an uncertainty quantification (UQ) study of a carbon cycle model and focus on the comparison between steady-state and transient simulation setups. A global sensitivity analysis (GSA) study indicates the parameters and parameter couplings that are important at different times of the year for quantities of interest (QoIs) obtained with the data assimilation linked ecosystem carbon (DALEC) model. We then employ a Bayesian approach and a statistical model error term to calibrate the parameters of DALEC using net ecosystem exchange (NEE) observations at the Harvard Forest site. The calibration results are employed in the second part of the paper to assess the predictive skill of the model via posterior predictive checks.
 
Teil von