dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Monitoring of riparian vegetation response to flood disturbances using terrestrial photography
VerfasserIn K. Džubáková, P. Molnar, K. Schindler, M. Trizna
Medientyp Artikel
Sprache Englisch
ISSN 1027-5606
Digitales Dokument URL
Erschienen In: Hydrology and Earth System Sciences ; 19, no. 1 ; Nr. 19, no. 1 (2015-01-13), S.195-208
Datensatznummer 250120588
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/hess-19-195-2015.pdf
 
Zusammenfassung
Flood disturbance is one of the major factors impacting riparian vegetation on river floodplains. In this study we use a high-resolution ground-based camera system with near-infrared sensitivity to quantify the immediate response of riparian vegetation in an Alpine, gravel bed, braided river to flood disturbance with the use of vegetation indices. Five large floods with return periods between 1.4 and 20.1 years in the period 2008–2011 in the Maggia River were analysed to evaluate patterns of vegetation response in three distinct floodplain units (main bar, secondary bar, transitional zone) and to compare the sensitivity of seven broadband vegetation indices. The results show both a negative (damage) and positive (enhancement) response of vegetation within 1 week following the floods, with a selective impact determined by pre-flood vegetation vigour, geomorphological setting and intensity of the flood forcing. The spatial distribution of vegetation damage provides a coherent picture of floodplain response in the three floodplain units. The vegetation indices tested in a riverine environment with highly variable surface wetness, high gravel reflectance, and extensive water–soil–vegetation contact zones differ in the direction of predicted change and its spatial distribution in the range 0.7–35.8%. We conclude that vegetation response to flood disturbance may be effectively monitored by terrestrial photography with near-infrared sensitivity, with potential for long-term assessment in river management and restoration projects.
 
Teil von