dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel High-energy radiation from thunderstorms and lightning with the Large Observatory for x-ray Timing (LOFT) mission
VerfasserIn Martino Marisaldi, David M. Smith, Søren Brandt, Michael S. Briggs, Carl Budz-Jørgensen, Riccardo Campana, Brant E. Carlson, Sebastien Celestin, Valerie Connaughton, Steven A. Cummer, Joseph R. Dwyer, Gerald J. Fishman, Martin Füllekrug, Fabio Fuschino, Thomas Gjesteland, Torsten Neubert, Nikolai Østgaard, Marco Tavani
Konferenz EGU General Assembly 2015
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 17 (2015)
Datensatznummer 250112405
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2015-14917.pdf
 
Zusammenfassung
We explore the possible contributions of the Large Observatory for X-ray Timing (LOFT) mission to the study of high-energy radiation from thunderstorms and lightning. LOFT is a mission dedicated to X-ray timing studies of astrophysical sources, characterised by a very large effective area of about 8.5 square meters at 8ÂkeV. Although the main scientific target of the mission is the fundamental physics of matter under extreme conditions, the peculiar instrument concept allows significant contributions to a wide range of other science topics, including the cross-disciplinary field of high-energy atmospheric physics, at the crossroad between geophysics, space physics and astrophysics. In this field we foresee the following major contributions: detect ≈ˆ 700 Terrestrial Gamma-ray Flashes (TGFs) per year, probing the TGF intensity distribution at low fluence values and providing an unbiased sample of bright events thanks to the intrinsic robustness against dead-time and pile-up; provide the largest TGF detection rate surface density above the equator, allowing for correlation studies with lightning activity on short time scales and small regional scales, to probe the TGF / lightning relationship; lower by a factor ≈ˆ 5 the minimum detectable fluence for Terrestrial Electron Beams (TEBs), an additional tool to probe TGF production mechanism and the lower edge of TGF intensity distribution; open up a discovery space for the detection of high-altitude electron beams and weak X-ray emissions associated to Transient Luminous Events (TLEs). LOFT has been studied as a candidate ESA M3 mission during an extensive assessment phase. The high level of readiness and maturity of the mission, as well as the clean and solid assessment of its unique science case, make LOFT a competitive mission with a compelling science case. For this reason, its development has been continued, aiming at new launch opportunities.