|
Titel |
On the lack of robustness of hydrologic models regarding water balance simulation: a diagnostic approach applied to three models of increasing complexity on 20 mountainous catchments |
VerfasserIn |
L. Coron, V. Andréassian, C. Perrin, M. Bourqui, F. Hendrickx |
Medientyp |
Artikel
|
Sprache |
Englisch
|
ISSN |
1027-5606
|
Digitales Dokument |
URL |
Erschienen |
In: Hydrology and Earth System Sciences ; 18, no. 2 ; Nr. 18, no. 2 (2014-02-21), S.727-746 |
Datensatznummer |
250120287
|
Publikation (Nr.) |
copernicus.org/hess-18-727-2014.pdf |
|
|
|
Zusammenfassung |
This paper investigates the robustness of rainfall–runoff models when their
parameters are transferred in time. More specifically, we propose an approach
to diagnose their ability to simulate water balance on periods with different hydroclimatic
characteristics. The testing procedure consists in a series of parameter
calibrations over 10 yr periods and the systematic analysis of mean flow volume
errors on long records. This procedure was applied to three conceptual models
of increasing structural complexity over 20 mountainous catchments in southern France.
The results showed that robustness problems are common. Errors on 10 yr mean
flow volume were significant for all calibration periods and model structures.
Various graphical and numerical tools were used to investigate these errors and
unexpectedly strong similarities were found in the temporal evolutions
of these volume errors. We indeed showed that relative changes in simulated
mean flow between 10 yr periods can remain similar, regardless of the calibration
period or the conceptual model used. Surprisingly, using longer records for parameters
optimisation or using a semi-distributed 19-parameter daily model instead of a simple
1-parameter annual formula did not provide significant improvements regarding these
simulation errors on flow volumes. While the actual causes for these robustness problems
can be manifold and are difficult to identify in each case, this work highlights that the
transferability of water balance adjustments made during calibration can be poor,
with potentially huge impacts in the case of studies in non-stationary conditions. |
|
|
Teil von |
|
|
|
|
|
|