|
Titel |
Climate-related changes in peatland carbon accumulation during the last millennium |
VerfasserIn |
D. J. Charman, D. W. Beilman, M. Blaauw, R. K. Booth, S. Brewer, F. M. Chambers, J. A. Christen, A. Gallego-Sala, S. P. Harrison, P. D. M. Hughes, S. T. Jackson, A. Korhola, D. Mauquoy, F. J. G. Mitchell, I. C. Prentice, M. Linden, F. Vleeschouwer, Z. C. Yu, J. Alm, I. E. Bauer, Y. M. C. Corish, M. Garneau, V. Hohl, Y. Huang, E. Karofeld, G. Roux, J. Loisel, R. Moschen, J. E. Nichols, T. M. Nieminen, G. M. MacDonald, N. R. Phadtare, N. Rausch, Ü. Sillasoo, G. T. Swindles, E.-S. Tuittila, L. Ukonmaanaho, M. Väliranta, S. Bellen, B. Geel, D. H. Vitt, Y. Zhao |
Medientyp |
Artikel
|
Sprache |
Englisch
|
ISSN |
1726-4170
|
Digitales Dokument |
URL |
Erschienen |
In: Biogeosciences ; 10, no. 2 ; Nr. 10, no. 2 (2013-02-08), S.929-944 |
Datensatznummer |
250017510
|
Publikation (Nr.) |
copernicus.org/bg-10-929-2013.pdf |
|
|
|
Zusammenfassung |
Peatlands are a major terrestrial carbon store and a persistent natural
carbon sink during the Holocene, but there is considerable uncertainty over
the fate of peatland carbon in a changing climate. It is generally assumed
that higher temperatures will increase peat decay, causing a positive
feedback to climate warming and contributing to the global positive carbon
cycle feedback. Here we use a new extensive database of peat profiles across
northern high latitudes to examine spatial and temporal patterns of carbon
accumulation over the past millennium. Opposite to expectations, our results
indicate a small negative carbon cycle feedback from past changes in the
long-term accumulation rates of northern peatlands. Total carbon accumulated
over the last 1000 yr is linearly related to contemporary growing season
length and photosynthetically active radiation, suggesting that variability
in net primary productivity is more important than decomposition in
determining long-term carbon accumulation. Furthermore, northern peatland
carbon sequestration rate declined over the climate transition from the
Medieval Climate Anomaly (MCA) to the Little Ice Age (LIA), probably because
of lower LIA temperatures combined with increased cloudiness suppressing net
primary productivity. Other factors including changing moisture status,
peatland distribution, fire, nitrogen deposition, permafrost thaw and
methane emissions will also influence future peatland carbon cycle
feedbacks, but our data suggest that the carbon sequestration rate could
increase over many areas of northern peatlands in a warmer future. |
|
|
Teil von |
|
|
|
|
|
|