dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel The influence of active region information on the prediction of solar flares: an empirical model using data mining
VerfasserIn M. Núñez, R. Fidalgo, M. Baena, R. Morales
Medientyp Artikel
Sprache Englisch
ISSN 0992-7689
Digitales Dokument URL
Erschienen In: Annales Geophysicae ; 23, no. 9 ; Nr. 23, no. 9 (2005-11-22), S.3129-3138
Datensatznummer 250015386
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/angeo-23-3129-2005.pdf
 
Zusammenfassung
Predicting the occurrence of solar flares is a challenge of great importance for many space weather scientists and users. We introduce a data mining approach, called Behavior Pattern Learning (BPL), for automatically discovering correlations between solar flares and active region data, in order to predict the former. The goal of BPL is to predict the interval of time to the next solar flare and provide a confidence value for the associated prediction. The discovered correlations are described in terms of easy-to-read rules. The results indicate that active region dynamics is essential for predicting solar flares.
 
Teil von