dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Mapping snow depth in alpine terrain with remotely piloted aerial systems and structure-from-motion photogrammetry – first results from a pilot study
VerfasserIn Marc Adams, Reinhard Fromm, Yves Bühler, Ruedi Bösch, Christian Ginzler
Konferenz EGU General Assembly 2016
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 18 (2016)
Datensatznummer 250128854
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2016-8886.pdf
 
Zusammenfassung
Detailed information on the spatio-temporal distribution of seasonal snow in the alpine terrain plays a major role for the hydrological cycle, natural hazard management, flora and fauna, as well as tourism. Current methods are mostly only valid on a regional scale or require a trade-off between the data‘s availability, cost and resolution. During a one-year pilot study, we investigated the potential of remotely piloted aerial systems (RPAS) and structure-from-motion photogrammetry for snow depth mapping. We employed multi-copter and fixed-wing RPAS, equipped with different low-cost, off-the shelf sensors, at four test sites in Austria and Switzerland. Over 30 flights were performed during the winter 2014/15, where different camera settings, filters and lenses, as well as data collection routines were tested. Orthophotos and digital surface models (DSM) where calculated from the imagery using structure-from-motion photogrammetry software. Snow height was derived by subtracting snow-free from snow-covered DSMs. The RPAS-results were validated against data collected using a variety of well-established remote sensing (i.e. terrestrial laser scanning, large frame aerial sensors) and in-situ measurement techniques. The results show, that RPAS i) are able to map snow depth within accuracies of 0.07-0.15 m root mean square error (RMSE), when compared to traditional in-situ data; ii) can be operated at lower cost, easier repeatability, less operational constraints and higher GSD than large frame aerial sensors on-board manned aircraft, while achieving significantly higher accuracies; iii) are able to acquire meaningful data even under harsh environmental conditions above 2000 m a.s.l. (turbulence, low temperature and high irradiance, low air density). While providing a first prove-of-concept, the study also showed future challenges and limitations of RPAS-based snow depth mapping, including a high dependency on correct co-registration of snow-free and snow-covered height measurements, as well as a significant impact of the underlying vegetation and illumination of the snow surface on the fidelity of the results.