dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel The impact of ocean acidification and warming on the elemental and stable isotope composition of Fucus vesiculosus in Wadden Sea mesocosm studies
VerfasserIn Vera Winde, Andreas Pansch, Anna-Kathrina Fenner, Maren Voss, Iris Schmiedinger, Bernd Schneider, Ragnhild Asmus, Harald Asmus, Michael E. Böttcher
Konferenz EGU General Assembly 2015
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 17 (2015)
Datensatznummer 250112099
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2015-12254.pdf
 
Zusammenfassung
In the frame of the German BIOACID II project the separate and combined effects of different stress factors (acidification, warming, eutrophication) on the elemental and stable isotope composition of Fucus vesiculosus are investigated by means of benthic mesocosm experiments in coastal waters of the the North Sea. We aim for a calibration of the biogeochemical and stable isotope composition of Fucus in response to single and combined temperature, pCO2 (pH), and nutrient changes. Benthocosm experiments are carried out at the AWI Wadden Sea station in List (Sylt Island, North Sea) with application of different stressors: an increase in temperature and an increase in atmospheric CO2 partial pressure. The experiments run for almost several months per season. The aquatic biogeochemistry (e.g. TA, pH, 13C(DIC)) as well as the elemental and stable isotope composition of the grown Fucus vesiculosus organic tissue were followed. It was found, that the changes in daily biological activity caused by alternating phases of net respiration and photosynthesis created strong variations in the dissolved carbonate system and changes in the carbon isotope composition of DIC. The atmosphere of some experimental set-ups was enriched with gaseous carbon dioxide. This caused fast corresponding changes in the isotopic composition of DIC, thereby acting as a tracer for newly formed organic tissue. The chemical and isotopic parameters of the dissolved carbonate system showed differences between the set ups. The research is supported by BMBF during project BIOACID II, Helmholtz AWI Sylt, and Leibniz IOW