dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel MHD simulations of the flapping instability in tail-like magnetic configurations with guide field
VerfasserIn Daniil Korovinskiy, Andrey Divin, Ivan Ivanov, Vladimir Semenov, Nikolay Erkaev, Anton Artemiev, Stefano Markidis, Giovanni Lapenta, Viktoria Ivanova, Darya Kubyshkina
Konferenz EGU General Assembly 2014
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 16 (2014)
Datensatznummer 250097994
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2014-13628.pdf
 
Zusammenfassung
The flapping (kink) mode developing in the magnetotail-like magnetic configuration with tailward growing normal magnetic component and finite guide field is studied by means of linearized 2-dimensional and non-linear 3-dimensional MHD modeling. We consider a particular case of a weak normal magnetic component (that is, small radius of the magnetic field line curvature), which makes the configuration unstable to a special branch of ballooning instability known as "double-gradient" mode, introduced recently to describe the magnetotail flapping oscillations. The initial tail-like equilibrium is provided by conventional Grad-Shafranov equation. The results of the 2D linearized MHD code are in agreement with the analytical predictions, and the growth rate is found to be close to the peak value provided by an analytical estimate. Both 2D and 3D calculations confirm that the double-gradient mode is excited in a region of large curvature of the magnetic field lines. In agreement with the analytical predictions, non-zero guide field reduces the growth rate significantly for large (compare to the current sheet width L) wave numbers k, hence the modes kL ~ 1 are the fastest growing. Thus, the non-zero guide field introduces a characteristic wavelength corresponding to the dispersion curve peak. For the guide field of ~ 0.5 (in the lobe magnetic field units), the mode decays totally.