dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Estimation of the water retention curve from the soil hydraulic conductivity and sorptivity in an upward infiltration process
VerfasserIn David Moret-Fernández, Marta Angulo, Borja Latorre, César González-Cebollada, María Victoria López
Konferenz EGU General Assembly 2017
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 19 (2017)
Datensatznummer 250143341
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2017-7050.pdf
 
Zusammenfassung
Determination of the saturated hydraulic conductivity, Ks, and the α and n parameters of the van Genuchten (1980) water retention curve, θ(h), are fundamental to fully understand and predict soil water distribution. This work presents a new procedure to estimate the soil hydraulic properties from the inverse analysis of a single cumulative upward infiltration curve followed by an overpressure step at the end of the wetting process. Firstly, Ks is calculated by the Darcy’s law from the overpressure step. The soil sorptivity (S) is then estimated using the Haverkamp et al., (1994) equation. Next, a relationship between α and n, f(α,n), is calculated from the estimated Sand Ks. The α and n values are finally obtained by the inverse analysis of the experimental data after applying the f(α,n) relationship to the HYDRUS-1D model. The method was validated on theoretical synthetic curves for three different soils (sand, loam and clay), and subsequently tested on experimental sieved soils (sand, loam, clay loam and clay) of known hydraulic properties. A robust relationship was observed between the theoretical α and nvalues (R2 > 0.99) of the different synthetic soils and those estimated from inverse analysis of the upward infiltration curve. Consistent results were also obtained for the experimental soils (R2 > 0.85). These results demonstrated that this technique allowed accurate estimates of the soil hydraulic properties for a wide range of textures, including clay soils.