dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Preliminary 3D In-situ measurements of the texture evolution of strained H2O ice during annealing using neutron Laue diffractometry
VerfasserIn Baptiste Journaux, Maurine Montagnat, Thomas Chauve, Bachir Ouladdiaf, John Allibon
Konferenz EGU General Assembly 2015
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 17 (2015)
Datensatznummer 250104287
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2015-3706.pdf
 
Zusammenfassung
Dynamic recrystallization (DRX) strongly affects the evolution of microstructure (grain size and shape) and texture (crystal preferred orientation) in materials during deformation at high temperature. Since texturing leads to anisotropic physical properties, predicting the effect of DRX is essential for industrial applications, for interpreting geophysical data and modeling geodynamic flows, and predicting ice sheet flow and climate evolution. A large amount of literature is available related to metallurgy, geology or glaciology, but there remains overall fundamental questions about the relationship between nucleation, grain boundary migration and texture development at the microscopic scale. Previous measurements of DRX in ice were either conducted using 2D ex-situ techniques such as AITA [1,2] or Electron Backscattering Diffraction (EBSD) [3], or using 3D statistical ex-situ [4] or in-situ [5] techniques. Nevertheless, all these techniques failed to observe at the scale of nucleation processes during DRX in full 3D. Here we present a new approach using neutron Laue diffraction, which enable to perform 3D measurements of in-situ texture evolution of strained polycrystalline H2O ice (>2% at 266 K) during annealing at the microscopic scale. Thanks the CYCLOPS instrument [6] (Institut Laue Langevin Grenoble, France) and the intrinsic low background of this setup, preliminary observations enabled us to follow, in H2O ice, the evolution of serrated grain boundaries, and kink-band during annealing. Our observations show a significant evolution of the texture and internal misorientation over the course of few hours at an annealing temperature of 268.5 K. In the contrary, ice kink-band structures seem to be very stable over time at near melting temperatures. The same samples have been analyzed ex-situ using EBSD for comparison. These results represent a first step toward in-situ microscopic measurements of dynamic recrystallization processes in ice during strain. This experiment has been conducted in the frame of the ANR-funded DREAM project that focuses on the recrystallization processes in anisotropic materials. References [1]ÂÂÂD. S. Russell-Head and C.J.L. Wilson., 2001, Journal of Glaciology, 24, 117-130. [2]ÂÂÂWilson, C.J.L., Peternell, M., Piazolo, S., Luzin, V., 2014, Journal of Structural Geology, Microdynamics of Ice, 61, 50-77. [3]ÂÂÂM. Montagnat, T. Chauve, F. Barou, A. Tommasi, B. Beausir, C. Fressengeas., in prep. [4]ÂÂÂT. H. Jacka and J. Li., 2000, In T. Hondoh, editor, Physics of Ice Core Records, pages 83-102. Hokkaido University Press, Sapporo. [5]ÂÂÂS. Piazolo, C. J. L. Wilson, V. Luzin, C. Brouzet, and M. Peternell., 2013, Geochemistry, Geophysics, Geosystems, 14, 4185-4194. [6]ÂÂÂB. Ouladdiaf et al., 2011, Journal of Applied Crystallography, 44, 392-397.