dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel A fuzzy neural network model to forecast the percent cloud coverage and cloud top temperature maps
VerfasserIn Y. Tulunay, E. T. Şenalp, Ş. Öz, L. I. Dorman, E. Tulunay, S. S. Menteş, M. E. Akcan
Medientyp Artikel
Sprache Englisch
ISSN 0992-7689
Digitales Dokument URL
Erschienen In: Annales Geophysicae ; 26, no. 12 ; Nr. 26, no. 12 (2008-12-05), S.3945-3954
Datensatznummer 250016321
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/angeo-26-3945-2008.pdf
 
Zusammenfassung
Atmospheric processes are highly nonlinear. A small group at the METU in Ankara has been working on a fuzzy data driven generic model of nonlinear processes. The model developed is called the Middle East Technical University Fuzzy Neural Network Model (METU-FNN-M). The METU-FNN-M consists of a Fuzzy Inference System (METU-FIS), a data driven Neural Network module (METU-FNN) of one hidden layer and several neurons, and a mapping module, which employs the Bezier Surface Mapping technique. In this paper, the percent cloud coverage (%CC) and cloud top temperatures (CTT) are forecast one month ahead of time at 96 grid locations. The probable influence of cosmic rays and sunspot numbers on cloudiness is considered by using the METU-FNN-M.
 
Teil von