dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel A geochemical approach for assessing the possible uses of the geothermal resource in the eastern sector of the Sabatini Volcanic District (Central Italy)
VerfasserIn Daniele Cinti, Franco Tassi, Monia Procesi, Lorenzo Brusca, Jacopo Cabassi, Francesco Capecchiacci, Antonio Delgado Huertas, Gianfranco Galli, Fausto Grassa, Orlando Vaselli, Nunzia Voltattorni
Konferenz EGU General Assembly 2017
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 19 (2017)
Datensatznummer 250154171
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2017-19239.pdf
 
Zusammenfassung
The Sabatini Volcanic District (SVD) hosts a hydrothermal reservoir heated by the post-magmatic activity that affected the peri-Tyrrhenian sector of central Italy, giving rise to a number of thermal and mineral discharges. In this study, a complete geochemical and isotopic dataset based on the composition of 215 water and 9 bubbling gases, collected from the eastern sector of this huge hydrothermal system, is reported. The main aims are to (i) investigate the fluid sources and the main chemical-physical processes controlling the fluid chemistry and (ii) construct a conceptual fluid circulation model to provide insights into the possible use(s) of the geothermal resource. The fluid discharges are fed by two main aquifers, characterized by: (1) a Ca-HCO3 to Ca(Na)-HCO3 composition, typical of a shallow hydrological circuit within volcanic and sedimentary formations, and (2) a Ca-HCO3(SO4) to Na(Ca)-HCO3(Cl) composition, produced by the interaction of CO2-rich fluids with Mesozoic and Triassic carbonate-evaporite rocks. A thick sequence of low-permeability volcanic products represents a physical barrier between the two fluid reservoirs. As commonly occurring in central-southern Italy, CO2 is mainly produced by thermo-metamorphic decarbonation within the carbonate-evaporite reservoir, with minor contribution of mantle CO2. A dominant crustal source is also indicated by the relatively low R/Ra values (0.07-1.04). Methane and light hydrocarbons are mostly thermogenic, whereas H2S derives from thermogenic reduction of the Triassic anhydrites. Slightly positive 15N/14N values suggest minor N2 contribution from deep sedimentary sources. On the whole, a comparison of these geochemical features with those of the thermal fluids from the western portion of SVD highlights an eastward increasing influence of the shallow aquifer on the deep-originated fluids, likely caused by the proximity of the Apennine range from where the meteoric water, recharging the hydrothermal system, permeate. Accordingly, gas geothermometry in the CH4-CO2-H2 and H2S-CO2-H2 systems suggests equilibrium temperatures <200 °C, i.e. significantly lower than those measured in fluids from deep geothermal wells (300 °C). Although mitigated by the short distance from the Apennine range, the thermal anomaly recognized by fluid geochemistry in the eastern SVD makes this area suitable for direct exploitation of the geothermal resource.