dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel New microphysical volcanic forcing datasets for the Agung, El Chichon and Pinatubo eruptions
VerfasserIn Sandip Dhomse, Graham Mann, Lauren Marshall, Kenneth Carslaw, Martyn Chipperfield, Nicolas Bellouin, Olaf Morgenstern, Colin Johnson, Fiona O'Connor
Konferenz EGU General Assembly 2017
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 19 (2017)
Datensatznummer 250153859
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2017-18890.pdf
 
Zusammenfassung
Major tropical volcanic eruptions inject huge amounts of SO2 directly into the stratosphere, and create a long-lasting perturbation to the stratospheric aerosol. The abruptly elevated aerosol has strong climate impacts, principally surface cooling via scattering incoming solar radiation. The enhanced tropical stratospheric aerosol can also absorb outgoing long wave radiation causing a warming of the stratosphere and subsequent complex composition-dynamics responses (e.g. Dhomse et al., 2015). In this presentation we apply the composition-climate model UM-UKCA with interactive stratospheric chemistry and aerosol microphysics (Dhomse et al., 2014) to assess the enhancement to the stratospheric aerosol and associated radiative forcings from the three largest tropical eruptions in the last 60 years: Mt Agung (February 1963), El Chichon (April 1982) and Mt. Pinatubo (June 1991). Accurately characterising the forcing signature from these major eruptions is important for attribution of recent climate change and volcanic effects have been identified as a key requirement for robust attribution of multi-decadal surface temperature trends (e.g. Marotzke and Forster, 2015). Aligning with the design of the ISA-MIP co-ordinated multi-model “Historical Eruption SO2 Emissions Assessment” (HErSEA), we have carried out 3-member ensemble of simulations with each of upper, low and mid-point best estimates for SO2 and injection height for each eruption. We evaluate simulated aerosol properties (e.g. extinction, AOD, effective radius, particle size distribution) against a range of satellite and in-situ observational datasets and assess stratospheric heating against temperature anomalies are compared against reanalysis and other datasets. References: Dhomse SS, Chipperfield MP, Feng W, Hossaini R, Mann GW, Santee ML (2015) Revisiting the hemispheric asymmetry in midlatitude ozone changes following the Mount Pinatubo eruption: A 3-D model study, Geophysical Research Letters, 42, pp.3038-3047. doi: 10.1002/2015GL063052 Dhomse SS, Emmerson KM, Mann GW, Bellouin N, Carslaw KS, Chipperfield MP, Hommel R, Abraham NL, Telford P, Braesicke P, Dalvi M, Johnson CE, O'Connor F, Morgenstern O, Pyle JA, Deshler T, Zawodny JM, Thomason LW (2014) Aerosol microphysics simulations of the Mt.˜Pinatubo eruption with the UM-UKCA composition-climate model, Atmospheric Chemistry and Physics, 14, pp.11221-11246. doi: 10.5194/acp-14-11221-2014 Marotzke J; Forster PM (2015) Forcing, feedback and internal variability in global temperature trends, Nature, 517, pp.565-570. doi: 10.1038/nature14117