dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel The causes of covariation between C and O isotopes in the inorganic carbonate record
VerfasserIn Peter Swart, Amanda Oehlert
Konferenz EGU General Assembly 2017
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 19 (2017)
Datensatznummer 250152958
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2017-17870.pdf
 
Zusammenfassung
The δ13C values of carbonate rocks are widely used as proxies for understanding the global carbon cycle. While most workers would prefer to use δ13C values measured in oceanic sediments, during older times the only records that exist are those found in sediments deposited in epeiric seas or on continental margins and carbonate platforms. However, such records are often compromised by near surface diagenesis and therefore care must be taken to exclude altered records. One approach, which has been widely applied, has been to examine the covariation between δ13C and δ18O values, where a positive covariation has been suggested to indicate alteration. In order to test this assumption we present data from a core taken in the Bahamas that has been unequivocally subjected to both freshwater and marine diagenetic processes. Our data suggest that the majority of the zone which has been altered by freshwater shows no correlation between δ13C and δ18O values, with small intervals associated with sub-aerial exposure exhibiting inverse correlations, and only the upper partially altered portion of the core exhibiting positive relationships. The zone below the region of freshwater alteration, previously interpreted as being the mixing-zone, is characterized by a strong covariation between δ13C and δ18O values as a result of the upper portion of this zone having been affected by fresh water diagenesis compared to the lower portion. Within the marine influenced realm a variety of relationships are produced as a result of differences in sediment origin and diagenesis. For example, non-depositional surfaces, where marine diagenetic processes are maximized, are typically expressed by sharp positive correlations between δ13C and δ18O values, while changes related to different sediment sources are expressed as weak positive covariations. While the data set presented here may not be applicable in every situation, the study certainly emphasizes that care must be taken when rules of thumb such as covariation of δ13C and δ18O values suggest diagenesis.