dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Evaluation and adjustment of description of denitrification in the DailyDayCent and COUP models based on N2 and N2O laboratory incubation system measurements
VerfasserIn Balázs Grosz, Reinhard Well, Michael Dannenmann, René Dechow, Barbara Kitzler, Kerstin Michel, Jan Reent Köster
Konferenz EGU General Assembly 2017
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 19 (2017)
Datensatznummer 250151486
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2017-16075.pdf
 
Zusammenfassung
Denitrification is an anaerobic key process by microbes where the NO3− is step-by-step reduced and emitted as NO, N2O and finally N2 gas from the soil. The accurate knowledge of the reduction of nitrate (NO3−) and nitrite (NO2−) to N2O and molecular N2 is important because the N2O fraction is further reduced to N2 and constitutes the main emission source of this greenhouse gas from agricultural soils. Hence, our understanding and ability to quantify soil denitrification is crucial for mitigating nitrogen fertilizer loss as well as for reducing N2O emissions. Models can be an important tool to predict mitigation effects and help to develop climate smart mitigation strategies. Ideally, commonly used biogeochemical models could provide adequate predictions of denitrification processes of agricultural soils but often simplified process descriptions and inadequate model parameters prevent models from simulating adequate fluxes of N2 and N2O on field scale. Model development and parametrization often suffers from limited availability of empirical data describing denitrification processes in agricultural soils. While in many studies N2O emissions are used to develop and train models, detailed measurements on NO, N2O, N2 fluxes and concentrations and related soil conditions are necessary to develop and test adequate model algorithms. Composition of denitrifying communities, coinciding effects of management and local conditions on the development of denitrification hotspots are highly variable in space and time. To address this issue the coordinated research unit „Denitrification in Agricultural Soils: Integrated Control and Modelling at Various Scales (DASIM)” was initiated to more closely investigate N-fluxes caused by denitrification in response to environmental effects, soil properties and microbial communities. Data suitable to validate denitrification models are still scarce due to previous technical and/or methodical limitations of measuring N2 fluxes, but large data-sets are needed in view of the extreme spatio-temporal heterogeneity of denitrification. DASIM will provide such data based on laboratory incubations including measurement of N2O and N2 fluxes and determination of the relevant drivers. Here, we present how we will use these data to evaluate common biogeochemical process models (DailyDayCent, Coup) with respect to modeled NO, N2O and N2 fluxes from denitrification. The models are used with different settings. The first approximation is the basic “factory” setting of the models. The next step would show the precision in the results of the modeling after adjusting the appropriate parameters from the result of the measurement values and the “factory” results. The better adjustment and the well-controlled input and output measured parameters could provide a better understanding of the probable scantiness of the tested models which will be a basis for future model improvement.