dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel The influence of organic and inorganic gases during New Particle Formation (NPF) events at the Mediterranean remote site of ERSA in Cape-Corsica during the summer of 2013.
VerfasserIn Antoine Waked, Stéphane Sauvage, Vincent Michoud, Karine Sellegri, Kevin Berland, Alexandre Kukui, Elise Hallemans, Nora zannoni, Cerise kalogridis, Valérie Gros, Sébastien Dusanter, Nadine Locoge, Jean-François Doussin
Konferenz EGU General Assembly 2017
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 19 (2017)
Datensatznummer 250151210
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2017-15771.pdf
 
Zusammenfassung
As part of the CHARMEX (Chemistry Aerosol Mediterranean Experiments) project, more than one hundred organic and inorganic gaseous compounds were measured in the summer of 2013 at the Mediterranean remote site of ERSA in Cape-Corsica. During this period, New Particle formation (NPF) events were identified from July 31th to august 2nd when air masses originated from the North-eastern sector (Southern Europe). The results were compared to a non-NPF event from July 21th to July 23rd for which the same wind sectors were identified. They showed that the particles number [10-20 nm] measured by SMPS (Scanning Mobility Particle Sizer) were more correlated with carbon monoxide (CO) during non-NPF events indicating an influence of more polluted and more aged air masses (residence time of CO of ~60 days). Sulfuric acid (H2SO4) and sulfur dioxide do not show a significant influence in the formation of nucleation events. On the other hand, biogenic Volatile Organic Compounds (BVOCs) such as isoprene, and mono-terpenes as well as their oxidation products (e.g. MACR+MVK, MTOP) showed good correlation during NPF-events in the range of (r from 0.45 to 0.59) higher than the ones reported during non-NPF events (0.11-0.34) highlighting the importance of these BVOCs on NPF days. The comparison of measured vs calculated reactivity (Zannoni et al, 2016) showed that during NPF-events, the missing part of OH reactivity was higher. It indicates that unmeasured species like sesquiterpenes, organo-nitrates, or oxygenated compounds may play a significant role in such events.