dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel A Coupled Earthquake-Tsunami Simulation Framework Applied to the Sumatra 2004 Event
VerfasserIn Stefan Vater, Michael Bader, Jörn Behrens, Ylona van Dinther, Alice-Agnes Gabriel, Elizabeth H. Madden, Thomas Ulrich, Carsten Uphoff, Stephanie Wollherr, Iris van Zelst
Konferenz EGU General Assembly 2017
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 19 (2017)
Datensatznummer 250150400
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2017-14858.pdf
 
Zusammenfassung
Large earthquakes along subduction zone interfaces have generated destructive tsunamis near Chile in 1960, Sumatra in 2004, and northeast Japan in 2011. In order to better understand these extreme events, we have developed tools for physics-based, coupled earthquake-tsunami simulations. This simulation framework is applied to the 2004 Indian Ocean M 9.1-9.3 earthquake and tsunami, a devastating event that resulted in the loss of more than 230,000 lives. The earthquake rupture simulation is performed using an ADER discontinuous Galerkin discretization on an unstructured tetrahedral mesh with the software SeisSol. Advantages of this approach include accurate representation of complex fault and sea floor geometries and a parallelized and efficient workflow in high-performance computing environments. Accurate and efficient representation of the tsunami evolution and inundation at the coast is achieved with an adaptive mesh discretizing the shallow water equations with a second-order Runge-Kutta discontinuous Galerkin (RKDG) scheme. With the application of the framework to this historic event, we aim to better understand the involved mechanisms between the dynamic earthquake within the earth's crust, the resulting tsunami wave within the ocean, and the final coastal inundation process. Earthquake model results are constrained by GPS surface displacements and tsunami model results are compared with buoy and inundation data. This research is part of the ASCETE Project, "Advanced Simulation of Coupled Earthquake and Tsunami Events", funded by the Volkswagen Foundation.