dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel A finite area scheme for shallow granular flows on three-dimensional surfaces
VerfasserIn Matthias Rauter
Konferenz EGU General Assembly 2017
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 19 (2017)
Datensatznummer 250150082
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2017-14508.pdf
 
Zusammenfassung
Shallow granular flow models have become a popular tool for the estimation of natural hazards, such as landslides, debris flows and avalanches. The shallowness of the flow allows to reduce the three-dimensional governing equations to a quasi two-dimensional system. Three-dimensional flow fields are replaced by their depth-integrated two-dimensional counterparts, which yields a robust and fast method [1]. A solution for a simple shallow granular flow model, based on the so-called finite area method [3] is presented. The finite area method is an adaption of the finite volume method [4] to two-dimensional curved surfaces in three-dimensional space. This method handles the three dimensional basal topography in a simple way, making the model suitable for arbitrary (but mildly curved) topography, such as natural terrain. Furthermore, the implementation into the open source software OpenFOAM [4] is shown. OpenFOAM is a popular computational fluid dynamics application, designed so that the top-level code mimics the mathematical governing equations. This makes the code easy to read and extendable to more sophisticated models. Finally, some hints on how to get started with the code and how to extend the basic model will be given. I gratefully acknowledge the financial support by the OEAW project "beyond dense flow avalanches". \begin{thebibliography}{2} \bibitem[1]{savage1989motion} {\sc \au{Savage, S.~B.} \& \au{Hutter, K.}} \yr{1989} \at{The motion of a finite mass of granular material down a rough incline}. \jt{Journal of Fluid Mechanics} \bvol{199}, \pg{177--215}. \bibitem[2]{ferziger2002computational} {\sc \au{Ferziger, J.} \& \au{Peric, M.}} \yr{2002} {\em Computational methods for fluid dynamics\/}, 3rd edn. \publ{Springer}. \bibitem[3]{tukovic2012moving} {\sc \au{Tukovi{\'c}, {\v{Z}}.} \& \au{Jasak, H.}} \yr{2012} \at{{A moving mesh finite volume interface tracking method for surface tension dominated interfacial fluid flow}}. \jt{Computers \& fluids} \bvol{55}, \pg{70--84}. \bibitem[4]{weller1998tensorial} {\sc \au{Weller, H.~G.}, \au{Tabor, G.}, \au{Jasak, H.} \& \au{Fureby, C.}} \yr{1998} \at{A tensorial approach to computational continuum mechanics using object-oriented techniques}. \jt{Computers in physics} \bvol{12}~(6), \pg{620--631}. \end{thebibliography}