dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Identification of urban gas leaks and evaluation of methane emission inventories using mobile measurements
VerfasserIn Giulia Zazzeri, Dave Lowry, Rebecca E. Fisher, James L. France, Dominique Butler, Mathias Lanoisellé, Euan G. Nisbet
Konferenz EGU General Assembly 2017
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 19 (2017)
Datensatznummer 250149992
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2017-14409.pdf
 
Zusammenfassung
Leakages from the natural gas distribution network, power plants and refineries account for the 10% of national methane emissions in the UK (http://naei.defra.gov.uk/), and are identified as a major source of methane in big conurbations (e.g. Townsend‐Small et al., 2012; Phillips et al., 2013). The National Atmospheric Emission Inventories (NAEI) website provides a list of gas installations, but emissions from gas leakage, which in the inventories are estimated on the basis of the population distribution, are difficult to predict, which makes their estimation highly uncertain. Surveys with a mobile measurement system (Zazzeri et al., 2015) were carried out in the London region for detection of fugitive natural gas and in other sites in the UK (i.e. Bacton, Southampton, North Yorkshire) to identify emissions from various gas installations. The methane isotopic analysis of air samples collected during the surveys, using the methodology in Zazzeri et al. (2015), allows the calculation of the δ13C signature characterising natural gas in the UK. The isotopic value of the natural gas supply to SE London has changed a little in recent years, being close to -34 ‰ over 1998-99 period (Lowry et al., 2001) and close to -36 ‰ since at least 2002. Emissions from gas installations, such as pumping stations in NE England (-41 ± 2 ‰ ) were detected, but some of them were not listed in the inventories. Furthermore, the spatial distribution of the gas leaks identified during the surveys in the London region does not coincide with the distribution suggested by the inventories. By locating both small gas leaks and emissions from large gas installations, we can verify how these methane sources are targeted by national emission inventories. Lowry, D., Holmes, C.W., Rata, N.D., O'Brien, P., and Nisbet, E.G., 2001, London methane emissions: Use of diurnal changes in concentration and δ13C to identify urban sources and verify inventories: Journal of Geophysical Research: Atmospheres, v. 106, p. 7427-7448 Phillips, N. G., Ackley, R., Crosson, E. R., Down, A., Hutyra, L. R., Brondfield, M., Karr, J. D., Zhao, K., and Jackson, R. B., 2013, Mapping urban pipeline leaks: Methane leaks across Boston: Environmental Pollution, v. 173, p. 1-4 Townsend‐Small, A., Tyler, S. C., Pataki, D. E., Xu, X., and Christensen, L. E., 2012, Isotopic measurements of atmospheric methane in Los Angeles, California, USA: Influence of “fugitive” fossil fuel emissions: Journal of Geophysical Research: Atmospheres, v. 117, no. D7 Zazzeri, G., Lowry, D., Fisher, R., France, J., Lanoisellé, M., and Nisbet, E., 2015, Plume mapping and isotopic characterisation of anthropogenic methane sources: Atmospheric Environment, v. 110, p. 151-162