dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel New stratagies for modelling and forecasting the background solar wind
VerfasserIn Rui Pinto, Alexis Rouillard, Sacha Brun
Konferenz EGU General Assembly 2017
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 19 (2017)
Datensatznummer 250149414
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2017-13763.pdf
 
Zusammenfassung
The large-scale solar wind speed distribution varies in time in response to the cyclic variations of the strength and geometry of the magnetic field of the corona. Semi-empirical predictive laws (such as in the widely-used WSA law) parametrise the asymptotic solar wind speed via simple parameters describing the geometry of the coronal magnetic field. In practice, such scaling laws require ad-hoc corrections and empirical fits to in-situ spacecraft data, and a predictive law based solely on physical principles is still missing. I will discuss improvements to this kind of laws based on the analysis of very large samples of wind acceleration profiles in open flux-tubes (both from MHD simulations and potential-field extrapolations), and show that flux-tube expansion effectively control the locations of the slow and fast wind flows (as in WSA), but that the actual asymptotic wind speeds attained - specially those of the slow wind - are also dependent on field-line inclination. I will furthermore present a new solar wind model - MULTI-VP - which takes a coronal magnetic field map as input (past data or forecast), and computes a collection of solar wind profiles (1 to 30 Rsun) spanning a region of interest of the solar atmosphere (up to a full synoptic map) at any instant desired in quasi-real time, while keeping a good description the plasma heating and cooling mechanisms. MULTI-VP provides full sets of inner boundary conditions for heliospheric propagation models (such as ENLIL; see https://stormsweb.irap.omp.eu/doku.php?id=windmaptable), bypassing the need to rely on semi-empirical approaches. I will fully discuss the predictive capabilities of the model (synthetic imagery and in-situ time series) and its suitability to real-time space-weather applications. This is work is supported by the FP7 project #606692 (HELCATS).