dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Attribution of recent trends in atmospheric methane using inverse modelling
VerfasserIn Joe McNorton, Chris Wilson, Manuel Gloor, Martyn Chipperfield
Konferenz EGU General Assembly 2017
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 19 (2017)
Datensatznummer 250149345
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2017-13680.pdf
 
Zusammenfassung
Atmospheric methane (CH4) accounts for approximately 20% of the total direct anthropogenic radiative forcing by long-lived greenhouse gases (0.48±0.05 Wm−2), the second largest contributor after CO2. Atmospheric observations highlight two notable changes in CH4 since 2007. Firstly, the growth rate of methane increased to ∼7ppb/yr. Secondly, the CH4 13C/12C-ratio (δ13C) has become increasingly 13C-depleted. One possible explanation for both of these, is an increase in 13C-depleted CH4 emissions. This could be through increases in natural biogenic sources (e.g. wetlands), anthropogenic biogenic sources (e.g. agriculture) or a combination of both. A decrease in 13C-enriched non-biogenic emissions (e.g. biomass burning) could be an explanation for the 13C-depletion, but does not explain the CH4 increase. A reduction in the atmospheric concentration of OH, the main oxidant for atmospheric methane, could also explain both 13C-depletion and CH4 increase. We have performed a synthesis inversion using a 3-D atmospheric global chemical transport model, TOMCAT, for both CH4 and δ13C from 2005-2014. The inversion uses surface observations of both CH4 and δ13C to spatially constrain source types and possible changes to OH concentration. We will use results from this synthesis inversion to attribute the upturn in CH4 growth to specific source and sinks, and to discuss the uncertainties in this attribution.