dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Experimental insights into angiosperm origins.
VerfasserIn Barry Lomax, Alex Lee, Ian Smilie, Charles Knight, Garland Upchurch
Konferenz EGU General Assembly 2017
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 19 (2017)
Datensatznummer 250148968
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2017-13277.pdf
 
Zusammenfassung
The angiosperms occupy almost every habitat type on Earth and comprise nearly 90% of extant plant species. Yet this ascendency is a relatively recent (geological) phenomenon. Palaeobotanical evidence indicates a likely first occurrence in the Early Cretaceous followed by a relatively rapid increase in diversity with their rise to dominance marking the onset of modern world. Understanding this diversification event has been a key research question since Darwin commented on this “abominable mystery”, and it remains one of the most significant unanswered questions in plant biology. Sequencing work shows that the diversification and radiation was accompanied by successive whole genome duplication (WGD) events. Furthermore proxy data and predictions from long-term carbon cycle models indicate that the angiosperm diversification was accompanied by a decline in atmospheric CO2. These observation raise the intriguing possibility that declining atmospheric CO2 concentration and capacity to undergo polyploidy could have given angiosperms a competitive advantage when compared to other plant groups. Using comparative ecophysiology we set out to test the effects of declining atmospheric CO2 by growing a six species (Ranunculus acris and Polypodium vulgare, chosen to represent Cretaceous understorey angiosperms and pteridophytes respectively. Liquidambar styraciflua and Laurus nobilis represented canopy angiosperms and Ginkgo biloba and Metasequoia glyptostroboides canopy gymnosperms) in controlled conditions across a CO2 gradient (2000, 1200, 800 and 400 ppm) to simulate Cretaceous CO2decline. To test for WGDs we use the relationship between guard cell size and genome size to reconstruct angiosperm genome size as they radiated. Analysis of our fossil dataset shows that earliest angiosperms had a small genome size. Our experimental work shows that angiosperms have a greater capacity for acclimation suggesting that declining CO2 could have acted as a trigger for the angiosperm rise to dominance. When viewed collectively our data indicate that within angiosperms there is a close coupling of genome size to physiological and reproductive processes that is absent in other plant groups. Consequently the ability of angiosperms to alter key processes as genome size changes might explain a proportion of Darwin’s “abominable mystery”. More broadly, these data highlight the benefits of developing approaches that allow the integration of palaeobotanical observation with experimental data.