dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Endmember analysis of isothermal and high-temperature magnetization data from ODP 910C, Yermak Plateau, NW Svalbard
VerfasserIn Karl Fabian, Jochen Knies, Lina Kosareva, Danis Nurgaliev
Konferenz EGU General Assembly 2017
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 19 (2017)
Datensatznummer 250148601
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2017-12870.pdf
 
Zusammenfassung
Room temperature magnetic initial curves, upper hysteresis curves, acquisition curves of induced remanent magnetization (IRM), and backfield (BF) curves have been measured between -1.5 T and 1.5 T for more than 430 samples from Ocean Drilling Program (ODP) Hole 910C. The core was drilled in 556.4 m water depth on the southern Yermak Plateau (80∘15.896’N, 6∘35.430’E), NW Svalbard. In total, 507.4 m of sediments were cored, and average recovery was 57%, with 80% between 170 and 504.7 meter below seafloor (mbsf). For this study, the borehole was re-sampled between 150 mbsf and 504.7 mbsf for environmental magnetic, inorganic geochemical, and sedimentological analyses (443 samples). The lithology is mainly silty-clay with some enrichments of fine sands in the lower section (below 400 mbsf). For all samples, a Curie express balance was used to obtain the temperature dependence of induced magnetization in air at a heating rate of 100 ∘C/min up to a maximum temperature of 800 ∘C. The hysteresis curves were used to infer classical hysteresis parameters like saturation remanence (Mrs), saturation magnetization (Ms), remanence coercivity (Hcr) or coercivity (Hc). In addition several other parameters, like hysteresis energy, high-field slope or saturation field have been determined and help to characterize the down-core variation of the magnetic fractions. Acquisition curves of isothermal remanent magnetization are decomposed into endmembers using non-negative matrix factorization. The obtained mixing coefficients decompose hysteresis loops, back-field, thermomagnetic curves, geochemistry, and sedimentological parameters into their related endmember components. Down-core variation of the endmembers enables reconstruction of sediment transport processes and in-situ formation of magnetic mineral phases.