dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Autotrophic and heterotrophic soil respiration determined with trenching, soil CO2 fluxes and 13CO2/12CO2 concentration gradients in a boreal forest ecosystem
VerfasserIn Jukka Pumpanen, Narasinha Shurpali, Liisa Kulmala, Pasi Kolari, Jussi Heinonsalo
Konferenz EGU General Assembly 2017
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 19 (2017)
Datensatznummer 250148420
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2017-12677.pdf
 
Zusammenfassung
Soil CO2 efflux forms a substantial part of the ecosystem carbon balance, and it can contribute more than half of the annual ecosystem respiration. Recently assimilated carbon which has been fixed in photosynthesis during the previous days plays an important role in soil CO2 efflux, and its contribution is seasonally variable. Moreover, the recently assimilated C has been shown to stimulate the decomposition of recalcitrant C in soil and increase the mineralization of nitrogen, the most important macronutrient limiting gross primary productivity (GPP) in boreal ecosystems. Podzolic soils, typical in boreal zone, have distinctive layers with different biological and chemical properties. The biological activity in different soil layers has large seasonal variation due to vertical gradient in temperature, soil organic matter and root biomass. Thus, the source of CO2 and its components have a vertical gradient which is seasonally variable. The contribution of recently assimilated C and its seasonal as well as spatial variation in soil are difficult to assess without disturbing the system. The most common method of partitioning soil respiration into its components is trenching which entails the roots being cut or girdling where the flow of carbohydrates from the canopy to roots has been isolated by cutting of the phloem. Other methods for determining the contribution of autotrophic (Ra) and heterotrophic (Rh) respiration components in soil CO2 efflux are pulse labelling with 13CO2 or 14CO2 or the natural abundance of 13C and/or 14C isotopes. Also differences in seasonal and short-term temperature response of soil respiration have been used to separate Ra and Rh. We compared the seasonal variation in Ra and Rh using the trenching method and differences between seasonal and short-term temperature responses of soil respiration. I addition, we estimated the vertical variation in soil biological activity using soil CO2 concentration and the natural abundance of 13C and 12C in CO2 in different soil layers in a boreal forest in Southern Finland and compared them to seasonal variation in GPP. Our results show that Ra followed a seasonal variation in GPP with a time lag of about 2 weeks. The contribution of Ra on soil CO2 efflux was largest in July and August. There was also a distinct seasonal pattern in the vertical distribution of soil CO2 concentration and the abundances of natural isotopes 13C/12C in soil CO2 which reflected the changes in biological activity in the soil profile. Our results indicate that all methods were able to distinguish seasonal variability in Ra and Rh. The soil CO2 gradient method was able to reproduce the temporal variation in soil CO2 effluxes relatively well when compared to those measured with chambers. However, variation in soil moisture also causes significant variation in soil air CO2 concentrations which interferes with the variation resulted from soil temperatures and belowground allocation of carbon from recent photosynthate. Also, the assumptions used in gradient method calculations, such as soil porosity and transport distances have to be taken into account when interpreting the results.