dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Turbulent Inertial Particle Pair Diffusion
VerfasserIn Syed Usama, Nadeem Malik
Konferenz EGU General Assembly 2017
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 19 (2017)
Datensatznummer 250148274
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2017-12517.pdf
 
Zusammenfassung
Inertial particle pair diffusion has received much less attention than fluid particle pair diffusion, even though it is arguably more relevant to real world applications, such as sand storms, and pollen dispersion. Only the DNS work of Bec et al [1] has been reported. A non-local theory of fluid particle pair diffusion has recently been proposed [2,3]; but the question is, can non-locality be extended to inertial particle pair diffusion? Here, we investigate it using Kinematic Simulations [4,5], in the limit of Stokes' drag where the transport is given by, \begin{equation} \frac{d{\bf x}}{dt}={\bf v}(t), &\qquad& \frac{d{\bf v}}{dt} = -\frac{1}{\tau}({\bf v}(t)-{\bf u}) \end{equation} ${\bf x}(t)$ is the particle position at time $t$, ${\bf v}(t)$ is the particle velocity, ${\bf u}({\bf x},t)$ is the Eulerian velocity field generated by the KS model, $\tau$ is the particle response time. The Stokes number is, $St=\tau/t_\eta$, where $t_\eta$ is the Kolmogorov time scale, $\sigma_l(t)=\langle l(t)^2\rangle^{1/2}$, where $l(t)=|{\bf x}_1(t)-{\bf x}_2(t)|$ is the distance between particles in a pair, in an ensemble of particle pairs released at time $t=0$ such that $l(t=0) =l_0 2/3$. KS was used in a frame of reference moving with the (virtual) large scale sweeping velocities with spectrum, $E(k)\sim k^{-5/3}$, for $1\le k $\le$10^4$, and $E(k)=0$, for $k