dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel CO2 concentration characteristics and possible influence of waves on the rate of CO2 transfer between the ocean and the atmosphere in a coastal region.
VerfasserIn Carlos F. Herrera-Vazquez, Francisco J. Ocampo-Torres
Konferenz EGU General Assembly 2017
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 19 (2017)
Datensatznummer 250147425
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2017-11588.pdf
 
Zusammenfassung
In order to understand the physical processes involved in the air-sea transfer velocity of CO2 in a coastal region. The possible influence of the waves as an external agent is studied in order to characterize the CO2 transfer. The air-sea transfer velocity of CO2 was calculated from direct measurements of CO2 flux and CO2 partial pressure difference at the area of Punta Morro in Ensenada, B. C., Mexico during the period from 13 April to 3 May of 2016. CO2 fluxes were measured at the coastline at a height of 10m by a flux measurement tower using eddy covariance method; in the sea, at a distance of approximately 1000m from the measuring tower, a CO2 sensor (Pro-Oceanus) was used to measure the CO2 partial pressures in air and sea water at a distance of approximately 2m of the surface. On the sea bottom at a depth of 10m and 400m from the coastline, a CO2 sensor (SAMI-CO2) and acoustic profiler (Aquadopp, Nortek AS) were installed measuring CO2 partial pressure in the sea water and waves, respectively. The results show that CO2 concentration is not homogeneous in the study area, we were able to identify both horizontal and vertical gradients of pCO2 in the air and in sea water. Close to the sea surface, values of pCO2 in sea water were always smaller than there in air. The measured CO2 flux was in average negative during our field experiment. The air-sea transfer velocity of CO2 was obtained, resulting in a subtle relation with the significant wave height incident to the coast.This work is a RugDiSMar project (CONACYT 155793) contribution. Partial support from CB-2015-01-255377 is appreciated.