dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Porosity developed during mineral replacement reactions: implications for fluid flux in the Earth
VerfasserIn Christine V. Putnis, Elisabete Trindade Pedrosa, Jörn Hövelmann, Francois Renard, Encarnacion Ruiz-Agudo
Konferenz EGU General Assembly 2017
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 19 (2017)
Datensatznummer 250146699
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2017-10737.pdf
 
Zusammenfassung
Aqueous fluids, that are ubiquitous in the crust of the Earth, will move through possible pathways in rocks. Rocks characteristically have low permeability but fractures can provide fast fluid channels. Mineral grain boundaries also present easy fluid pathways. However, porosity within minerals forms when a mineral is out of equilibrium with an aqueous fluid and reactions take place in an attempt to reach a new equilibrium. Commonly, dissolution at a mineral-fluid interface initiates one or several coupled reactions involving dissolution and precipitation (Putnis C.V. and Ruiz-Agudo E., 2013; Ruiz-Agudo et al., 2014). In pseudomorphic volume-deficit reactions, a new phase forms while porosity is created, and thereby reactive fluid flow through the originally solid mineral is enhanced. These coupled dissolution-replacement reactions therefore will constrain the flux of material carried by the fluid. These reactions are common during such processes as metamorphism, metasomatism, and weathering. When rock-forming minerals such as feldspars, olivine, pyroxenes and carbonates are in contact with aqueous fluids (typically NaCl-rich) porosity is formed during the interfacial replacement reactions. Elements present in the parent mineral are released to the fluid and therefore mobilized for transport elsewhere. Porosity formation has been shown in a number of systems, such as during the albitisation of feldspars (Hövelmann et al., 2009) and the replacement of carbonates by apatite phases (Pedrosa et al., 2016). Some of these examples will be presented as well as examples from atomic force microscopy (AFM) experiments used to image these reactions at a nanoscale, especially at the calcite-fluid interface, when new phases can be directly observed forming. This mechanism has also been shown as a means of carbon and phosphorus sequestration and for the removal of toxic elements from superficial waters, such as Se and As. References Ruiz-Agudo E., Putnis C.V., Putnis A. (2014) Coupled dissolution and precipitation at mineral–fluid interfaces. Chem. Geol., 383, 132-146. Putnis C.V. and Ruiz-Agudo E. (2013) The mineral-water interface: where minerals react with the environment. Elements, 9, 177-182. Hövelmann J., Putnis A., Geisler T., Schmidt B.C., Golla-Schindler U. (2009) The replacement of plagioclase feldspars by albite: observations from hydrothermal experiments. Contrib. Min. and Pet. 159, 43-59. Pedrosa E.T., Putnis C.V., Putnis A. (2016) The pseudomorphic replacement of marble by apatite: the role of fluid composition. Chem. Geol., 425, 1-11.