dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Kinematics and dynamics of a solitary wave interacting with varying bathymetry and/or a vertical wall
VerfasserIn Christos Papoutsellis, Gerassimos Athanassoulis, Alexis-Tzianni Charalampopoulos
Konferenz EGU General Assembly 2017
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 19 (2017)
Datensatznummer 250146679
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2017-10716.pdf
 
Zusammenfassung
\begin{document} \noindent In this work, we investigate the transformations that solitary surface waves undergo during their interaction with uneven seabed and/or fully reflective vertical boundaries. This is accomplished by performing simulations using a non-local Hamiltonian formulation, taking into account full nonlinearity and dispersion, in the presence of variable seabed [1]. This formulation is based on an exact coupled-mode representation of the velocity potential, leading to efficient and accurate computations of the Dirichlet to Neumann operator, required in Zakharov/Craig-Sulem formulation [2], [3]. In addition, it allows for the efficient computation of wave kinematics (velocity, acceleration) and the pressure field, in the time-dependent fluid domain, up to its physical boundaries. Such computations are performed for the case of high-amplitude solitary waves interacting with varying bathymetry and/or a vertical wall, shedding light to their kinematics and dynamics. More specifically, we first consider two benchmark cases, namely the transformation of solitary waves over a plane beach [4], and the reflection of solitary waves on a vertical wall [5]. As a further step, results on the scattering/reflection of a solitary wave due to an undulating seabed, and on the disintegration of a solitary wave travelling form shallow to deep water are also presented. \\ \normalsize \noindent\textbf{References:}\\ $[1]$ G.A. Athanassoulis. \& Ch.E. Papoutsellis, in Volume 7: Ocean Engineering, ASME, OMAE2015-41452, p. V007T06A029 (2015)\\ $[2]$ W. Craig, C. Sulem, \emph{J. Comp. Phys.} \textbf{108}, 73-83 (1993)\\ $[3]$ V. Zakharov, \emph{J. Appl. Mech. Tech. Phys} \textbf{9}, 86--94 (1968)\\ $[4]$ S. Grilli, R. Subramanya, T. Svendsen. \& J. Veeramony, \emph{J. Waterway, Port, Coastal, Ocean Eng.} \textbf{120}(6), 609--628. (1994)\\ $[5]$ Y.Y. Chen, C. Kharif , J.H. Yang, H.C. Hsu, J. Touboul \& J. Chambarel, \emph{Eur. J. Mech B-Fluid} \textbf{49}, 20-28 (2015) \end{document}