dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel On the Application of Science Systems Engineering and Uncertainty Quantification for Ice Sheet Science and Sea Level Projections
VerfasserIn Nicole-Jeanne Schlegel, Carmen Boening, Eric Larour, Daniel Limonadi, Michael Schodlok, Hélène Seroussi, Michael Watkins
Konferenz EGU General Assembly 2017
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 19 (2017)
Datensatznummer 250146589
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2017-10619.pdf
 
Zusammenfassung
Research and development activities at the Jet Propulsion Laboratory (JPL) currently support the creation of a framework to formally evaluate the observational needs within earth system science. One of the pilot projects of this effort aims to quantify uncertainties in global mean sea level rise projections, due to contributions from the continental ice sheets. Here, we take advantage of established uncertainty quantification tools embedded within the JPL-University of California at Irvine Ice Sheet System Model (ISSM). We conduct sensitivity and Monte-Carlo style sampling experiments on forward simulations of the Greenland and Antarctic ice sheets. By varying internal parameters and boundary conditions of the system over both extreme and credible worst-case ranges, we assess the impact of the different parameter ranges on century-scale sea level rise projections. The results inform efforts to a) isolate the processes and inputs that are most responsible for determining ice sheet contribution to sea level; b) redefine uncertainty brackets for century-scale projections; and c) provide a prioritized list of measurements, along with quantitative information on spatial and temporal resolution, required for reducing uncertainty in future sea level rise projections. Results indicate that ice sheet mass loss is dependent on the spatial resolution of key boundary conditions - such as bedrock topography and melt rates at the ice-ocean interface. This work is performed at and supported by the California Institute of Technology's Jet Propulsion Laboratory. Supercomputing time is also supported through a contract with the National Aeronautics and Space Administration's Cryosphere program.