dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Vegetation and land carbon feedbacks in the high-resolution transient Holocene simulations using the MPI Earth system model
VerfasserIn Victor Brovkin, Stephan Lorenz, Thomas Raddatz
Konferenz EGU General Assembly 2017
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 19 (2017)
Datensatznummer 250146359
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2017-10383.pdf
 
Zusammenfassung
Plants influence climate through changes in the land surface biophysics (albedo, transpiration) and concentrations of the atmospheric greenhouse gases. One of the interesting periods to investigate a climatic role of terrestrial biosphere is the Holocene, when, despite of the relatively steady global climate, the atmospheric CO2 grew by about 20 ppm from 7 kyr BP to pre-industrial. We use a new setup of the Max Planck Institute Earth System Model MPI-ESM1 consisting of the latest version of the atmospheric model ECHAM6, including the land surface model JSBACH3 with carbon cycle and vegetation dynamics, coupled to the ocean circulation model MPI-OM, which includes the HAMOCC model of ocean biogeochemistry. The model has been run for several simulations over the Holocene period of the last 8000 years under the forcing data sets of orbital insolation, atmospheric greenhouse gases, volcanic aerosols, solar irradiance and stratospheric ozone, as well as land-use changes. In response to this forcing, the land carbon storage increased by about 60 PgC between 8 and 4 kyr BP, stayed relatively constant until 2 kyr BP, and decreased by about 90 PgC by 1850 AD due to land use changes. Vegetation and soil carbon changes significantly affected atmospheric CO2 during the periods of strong volcanic eruptions. In response to the eruption-caused cooling, the land initially stores more carbon as respiration decreases, but then it releases even more carbon due to productivity decrease. This decadal- scale variability helps to quantify the vegetation and land carbon feedbacks during the past periods when the temporal resolution of the ice-core CO2 record is not sufficient to capture fast CO2 variations. From a set of Holocene simulations with prescribed or interactive atmospheric CO2, we get estimates of climate-carbon feedback useful for future climate studies. Members of the Hamburg Holocene Team: Jürgen Bader1, Sebastian Bathiany2, Victor Brovkin1, Martin Claussen1,3, Traute Crüger1, Roberta D’agostino1, Anne Dallmeyer1, Sabine Egerer1, Vivienne Groner1, Matthias Heinze1, Tatiana Ilyina1, Johann Jungclaus1, Thomas Kleinen1, Alexander Lemburg1, Stephan Lorenz1, Thomas Raddatz1, Hauke Schmidt1, Gerhard Schmiedl3, Bjorn Stevens1, Claudia Timmreck1, Matthew Toohey4 1Max-Planck-Institut für Meteorologie, D 2Wageningen University, NL 3CEN, Universität Hamburg, D 4GEOMAR Helmholtz Zentrum für Ozeanforschung Kiel, D