dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Vertical-axis block rotations linked to normal faulting: paleomagnetic and structural evidence from Miocene to Recent extensional basins in southern Turkey
VerfasserIn Ayten Koç, Douwe J. J. van Hinsbergen, Nuretdin Kaymakcı, Cornelis G. Langereis
Konferenz EGU General Assembly 2017
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 19 (2017)
Datensatznummer 250146107
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2017-10108.pdf
 
Zusammenfassung
Paleomagnetism provides important constraints on complex patterns of vertical axis rotations in orogens. Where normally paleomagnetism is applied to constrain regional rotations, in the vicinity of fault zones often locally varying rotation patterns occur. Here we provide results of an extensive paleomagnetic survey constraining vertical axis rotation in Neogene extensional continental basins in the Taurides, in the eastern flank of the Isparta Angle (SW Turkey). In total, 437 oriented cores were sampled at 43 sites distributed within Miocene-Pliocene continental sedimentary rocks from the basins at the eastern limb (Ilgın and Altınapa Basins) and also central part (Yalvaç Basin) of the Isparta Angle. Despite the more or less coherent overall strike of the mountain belt and sedimentary basins, our results show different senses and varying amounts of vertical rotation within short distances; the Altınapa Basin has undergone only very minor rotations during and after the Miocene, but the paleomagnetic data from Yalvaç and Ilgın basins show ~50° clockwise and ~20° counter-clockwise rotation, respectively. Following a long history of shortening and thrusting, our study area has undergone regional extension since the mid-Miocene, which is still active in the present-day as portrayed by active seismicity, earthquake focal mechanisms, field data including fault plane solutions, and GPS measurements. This extension is accommodated along major normal faults that end in relay ramps with overlapping, adjacent normal faults. We show that the paleomagnetically determined rotations are related to such relay ramps, in places superimposed on rigid block rotations, and can be used as a first-order tool to quantify horizontal extension. As such, vertical axis rotations and paleomagnetism unravels important insights in the evolution of deformation in major normal fault zones.