dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel The evolution of the Antarctic ice sheet at the Eocene-Oligocene Transition.
VerfasserIn Jean-Baptiste Ladant, Yannick Donnadieu, Christophe Dumas
Konferenz EGU General Assembly 2017
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 19 (2017)
Datensatznummer 250144340
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2017-8151.pdf
 
Zusammenfassung
An increasing number of studies suggest that the Middle to Late Eocene has witnessed the waxing and waning of relatively small ephemeral ice sheets. These alternating episodes culminated in the Eocene-Oligocene transition (34 – 33.5 Ma) during which a sudden and massive glaciation occurred over Antarctica. Data studies have demonstrated that this glacial event is constituted of two 50 kyr-long steps, the first of modest (10 – 30 m of equivalent sea level) and the second of major (50 – 90 m esl) glacial amplitude, and separated by ~ 200 kyrs. Since a decade, modeling studies have put forward the primary role of CO2 in the initiation of this glaciation, in doing so marginalizing the original “gateway hypothesis”. Here, we investigate the impacts of CO2 and orbital parameters on the evolution of the ice sheet during the 500 kyrs of the EO transition using a tri-dimensional interpolation method. The latter allows precise orbital variations, CO2 evolution and ice sheet feedbacks (including the albedo) to be accounted for. Our results show that orbital variations are instrumental in initiating the first step of the EO glaciation but that the primary driver of the major second step is the atmospheric pCO2 crossing a modelled glacial threshold of ~ 900 ppm. Although model-dependant, this higher glacial threshold makes a stronger case for ephemeral Middle-Late Eocene ice sheets. In addition, sensitivity tests demonstrate that the small first step only exists if the absolute pCO2 value remains within ~ 100 ppm higher than the glacial threshold during the first 250 kyrs of the transition. Thereby, the pCO2 sufficiently counterbalances the strong insolation minima occurring at 33.9 and 33.8 Ma but is low enough to allow the ice sheet to nucleate. Nevertheless, questions remain as to what may cause this pCO2 drop.