dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Sea-level rise induced amplification of coastal protection design heights
VerfasserIn Arne Arns, Sönke Dangendorf, Jürgen Jensen, Jens Bender, Stefan Talke, Charitha Pattiaratchi
Konferenz EGU General Assembly 2017
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 19 (2017)
Datensatznummer 250143469
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2017-7190.pdf
 
Zusammenfassung
Coastal protection design heights typically consider the superimposed effects of tides, surges, waves, and relative sea-level rise (SLR), neglecting non-linear feedbacks between these forcing factors. Here, we use hydrodynamic modelling and multivariate statistics to show that shallow coastal areas are extremely sensitive to changing non-linear interactions between individual components caused by SLR. As sea-level increases, the depth-limitation of waves relaxes, resulting in waves with larger periods, greater amplitudes, and higher run-up; moreover, depth and frictional changes affect tide, surge, and wave characteristics, altering the relative importance of other risk factors. Consequently, sea-level driven changes in wave characteristics, and to a lesser extent, tides, amplify the resulting design heights by an average of 48–56%, relative to design changes caused by SLR alone. Since many of the world’s most vulnerable coastlines are impacted by depth-limited waves, our results suggest that the overall influence of SLR may be greatly underestimated in many regions. Reference: Arns, A.; Dangendorf, S., Jensen, J., Talke, S., Bender, J., Pattiaratchi, C.: Sea-level rise induced amplification of coastal protection design heights. Sci. Rep. 6, 40171; doi: 10.1038/srep40171 (2016).