dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Total ozone loss during the 2016/17 Arctic winter and comparison to previous years
VerfasserIn Florence Goutail, Jean-Pierre Pommereau, Andrea Pazmino, Franck Lefèvre, Martyn Chipperfield, Wuhu Feng, Michel Van Roozendael, Paul Eriksen, Kerstin Stebel, Rigel Kivi, Kristof Bognar, Kimberly Strong, Kaley Walker
Konferenz EGU General Assembly 2017
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 19 (2017)
Datensatznummer 250141704
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2017-5240.pdf
 
Zusammenfassung
The amplitude of ozone depletion in the Arctic is monitored every year since 1994 by comparison between total ozone measurements of eight SAOZ / NDACC UV-Vis spectrometers deployed in the Arctic and 3-D chemical transport model simulations in which ozone is considered as a passive tracer. The method allows determining the evolution of the daily rate of the ozone destruction and the amplitude of the cumulative loss at the end of the winter. The amplitude of the destruction varies between 0-10% in relatively warm and short vortex duration years to 25-39% in colder and longer ones. However, as shown by the unprecedented depletion of 39% in 2010/11, the loss is not only dependent on the extension of the vortex in spring, but also on its strength limiting its re-noxification by import of nitrogen oxide species from the outside, as reported by the total NO2 columns measured by the SAOZ instruments. Shown in this presentation will be the evolution of ozone loss and re-noxification in the Arctic during the winter 2016/17 compared to that of previous winters. Compared to observed SAOZ O3 loss, REPROBUS and SLIMCAT CTM simulations are showing differences varying between 0% and 7% depending on the assumptions of vortex strength and isolation. The comparison between ozone loss amplitudes and ozone loss rates, seen each year since 1994 by SAOZ and the two CTM simulations will be followed by a discussion of possible causes in their variable amplitude.