dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel The "universal" behavior of the Breakthrough Curve in 3D aquifer transport and the validity of the First-Order solution
VerfasserIn Igor Jankovic, Mahdi Maghrebi, Aldo Fiori, Antonio Zarlenga, Gedeon Dagan
Konferenz EGU General Assembly 2017
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 19 (2017)
Datensatznummer 250141595
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2017-5125.pdf
 
Zusammenfassung
We examine the impact of permeability structures on the Breakthrough Curve (BTC) of solute, at a distance x from the injection plane, under mean uniform flow of mean velocity U. The study is carried out through accurate 3D numerical simulations, rather than the 2D models adopted in most of previous works. All structures share the same univariate distribution of the logconductivity Y = lnK and autocorrelation function ρY , but differ in higher order statistics. The main finding is that the BTC of ergodic plumes for the different examined structures is quite robust, displaying a seemingly "universal" behavior. The result is in variance with similar analyses carried out in the past for 2D permeability structures. The basic parameters (i.e. the geometric mean, the logconductivity variance σY 2 and the horizontal integral scale I) have to be identified from field data (e.g. core analysis, pumping test or other methods). However, prediction requires the knowledge of U, and the results suggest that improvement of the BTC prediction in applications can be achieved by independent estimates of the mean velocity U, e.g. by pumping tests, rather than attempting to characterize the permeability structure beyond its second-order characterization. The BTC prediction made by the Inverse Gaussian (IG) distribution, adopting the macrodispersion coefficient estimated by the First Order approximation αL = σY 2I, is also quite robust, providing a simple and effective solution to be employed in applications. The consequences of the latter result are further explored by modeling the mass distribution that occurred at the MADE-1 natural gradient experiment, for which we show that most of the plume features are adequately captured by the simple First Order approach.