dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Measurement-based modeling of daytime and nighttime oxidation of atmospheric mercury
VerfasserIn Eran Tas, Maor Gabay, Mordechai Peleg, Erick Fredj
Konferenz EGU General Assembly 2017
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 19 (2017)
Datensatznummer 250141558
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2017-5085.pdf
 
Zusammenfassung
Accurate characterization of gaseous elemental mercury (GEM) chemical oxidation pathways and their kinetics is critically important for assessing the transfer of atmospheric mercury to bioaquatic systems. Recent comprehensive field measurements have suggested that the nitrate radical (NO3) plays a role in efficient nighttime oxidation of GEM, and that the role of the hydroxyl radical (OH) as a GEM oxidant has been underestimated. We used the CAABA/MECCA chemical box model and additional kinetic calculations to analyze these measurement results, in order to investigate the nighttime and daytime oxidation of GEM. We assumed a second-order reaction for the NO3 induced nighttime oxidation of GEM. Our analysis demonstrated that nighttime oxidation of GEM has to be included in the model to account for the measured variations in nighttime reactive gaseous mercury (RGM) concentration. A lower limit and best-fit rate constant for GEM nighttime oxidation are provided. To the best of our knowledge, this is the first time that a rate for nighttime oxidation of GEM has been determined based on field measurements. Our analysis further indicates that OH has a much more important role in GEM oxidation than commonly considered. A lower-limit rate constant for the OH–RGM reaction is provided.