dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Source apportionment of major and trace elements in aerosols during smog episodes in large cities in China
VerfasserIn Markus Furger, Pragati Rai, Suzanne Visser, Miriam Elser, Francesco Canonaco, Jay G. Slowik, Ru-Jin Huang, André S. H. Prévôt, Urs Baltensperger
Konferenz EGU General Assembly 2017
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 19 (2017)
Datensatznummer 250140893
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2017-4344.pdf
 
Zusammenfassung
Air pollution in Chinese cities is one of the environmental problems China has to address to mitigate the impacts on human health, air quality and climate. Average concentrations of particulate matter exceed 100 μg m−3 in many places in China, and the government is developing and implementing strategies to reduce the load of pollutants by various measures. A characterization of airborne particulate matter (PM), especially its composition and sources, will help in optimizing reduction and mitigation strategies for air pollution. We collected PM10 aerosols with a rotating drum impactor (RDI) in Xi’an in December 2013 and in Beijing in January 2014 with 30-min time resolution and for three size ranges (cut-off sizes 10, 2.5 and 1 μm). Each campaign encompassed one or more high pollution episodes in the respective city. Elements from Na to Pb were analyzed with synchrotron radiation induced X-ray fluorescence spectrometry (SR-XRF), and the resulting time series were used for source apportionment performed with the Multilinear-Engine 2 (ME-2) implementation of the Positive Matrix Factorization algorithm. The preliminary computations yielded 5 factors for Beijing, namely road dust, sea salt, traffic-related, industrial, coal combustion. For Xi’an an additional desert dust factor was found. Further refinement could be expected from including the smaller size fractions, e.g. a sulfur-rich factor for secondary sulfate or a reacted chlorine factor in the fine mode fraction.