dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Long-term observation of particulate barium fluxes in the subtropical Northeast Atlantic (33°N, 22°W)
VerfasserIn Judith Stern, Olaf Dellwig, Joanna J. Waniek
Konferenz EGU General Assembly 2017
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 19 (2017)
Datensatznummer 250140876
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2017-4326.pdf
 
Zusammenfassung
Particle flux material was collected with a sediment trap in 2000 m depth of the deep-sea mooring Kiel 276. The mooring is located in the oligotrophic subtropical NE Atlantic (33˚ N, 22˚ W), which is influenced by the Azores Current and its associated front and lithogenic particle inputs via atmospheric transport pathways. Total barium fluxes and biogenic barium (Babio) fluxes between 2002 and 2008, calculated on the basis of Ba amounts measured with ICP-OES (inductively coupled plasma optical emission spectrometry), are demonstrated in this study. The behavior of (biogenic) barium in the deep-sea is of great interest because it is used as a proxy for surface ocean productivity. Nevertheless, formation and transport mechanisms of particulate Ba, especially barite, in the oceans are still under debate. Especially, long-term Ba flux studies demonstrating inter and intra annual variability are missing. To fill this gap we used time-series measurements of Ba fluxes observed at Kiel 276 to demonstrate the variability of particulate Ba formation and transport. Total Ba fluxes and Babio fluxes at the mooring are characterized by flux pattern attributed to the behavior of the total particle flux. The particle flux is highly variable with peak fluxes up to 365 mg m−2 d−1 during winter and early spring just after highest primary production (winter bloom of coccolithophores) and maximum dust concentration in the atmosphere occurred. The Babioflux (up to 97 % of the total Ba flux) is influenced by productivity but also by the position of the Azores Front leading to a clear reduced Babio flux from 2005 onwards related to changes in shape and size of the catchment area of the sediment trap and reduced productivity due to lower nutrient availability. We observed a close connection of Babio flux and Ca flux results from incorporation of Ba in biogenic CaCO3 and from the formation of aggregates including Ba-bearing particles like barite and biogenic CaCO3. The transport of particulate Ba seems to be mainly driven by the formation of aggregates in the water column.