dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel The impact of olive leaves, mosses and the burrowing of wild boars on soil erosion in olive orchards
VerfasserIn Artemi Cerdà, Estela Nadal-Romero, Eric C. Brevik, Manuel Pulido, Fermando T. Maestre, Tani Taguas, Agata Novara, Saskia Keesstra, Erik Cammeraat, Luis Parras-Alcántara
Konferenz EGU General Assembly 2017
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 19 (2017)
Datensatznummer 250140765
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2017-4195.pdf
 
Zusammenfassung
The main factor controlling soil erosion is vegetation cover (Cerdà and Doerr, 2005; Van Eck et al., 2016; van Hall et al., 2017). However, due to the removal of the vegetation in agricultural fields and the increase in soil erosion rates other factors arise as keys to control soil erosion rates and mechanisms (Ochoa-Cueva et al., 2016; Rodrigo Comino et al., 2016). Soil erosion rates in olive plantations are high due to the lack of vegetation cover as a consequence of intensive tillage and herbicides abuse (Taguas et al., 2015; Parras-Alcantara et al., 2016; Zema et al., 2016). This is also found in vineyards and other orchards around the world (Prosdocimi et al., 2016; Rodrígo Comino et al., 2016), and the reason to look for sustainable management techniques such as geotextiles, mulches or catch crops that will stop the accelerated soil erosion (Giménez Morera et al., 2010; Mwango et al., 2016; Nawaz et al., 2016a; 2016b; Nishigaki et al., 2016). All these management techniques are difficult to apply and have high costs. Natural solutions such as weeds to provide cover are very efficient and have no cost (Cerdà et al., 2016; Keesstra et al., 2016) and they can be adapted to the management of the farmers. In olive orchards under herbicide treatment there is a natural growth of mosses and the development of a litter layer composed of olive leaves. There is also burrowing by wild boars that “ploughs” the soil. This research evaluates the impact of the three items above on soil erosion. The measurements were carried out using simulated rainfall experiments over an area of 0.25 m2 at a rainfall rate of 55 mm h-1 during one hour (Cerdà, 1996; Prosdocimi et al., 2017) on 15 plots of mosses, 15 wild boar burrowed surfaces and 15 leaf covered surfaces during the winter of 2015. The soil erosion rates were 34 times greater in the wild boar burrowed soils, meanwhile the litter and mosses covered soils showed similar erosional responses and the soil erosion rates were negligible. Acknowledgements The research leading to these results has received funding from the European Union Seventh Framework Program (FP7/2007-2013) under grant agreement n_ 603498 (RECARE project) and the CGL2013- 47862-C2-1-R and CGL2016-75178-C2-2-R national research projects. References Cerdà, A. (1996). Seasonal variability of infiltration rates under contrasting slope conditions in southeast spain. Geoderma, 69(3-4), 217-232. Cerdà, A., & Doerr, S. H. (2005). Influence of vegetation recovery on soil hydrology and erodibility following fire: An 11-year investigation. International Journal of Wildland Fire, 14(4), 423-437. doi:10.1071/WF05044 Cerdà, A., González-Pelayo, O., Giménez-Morera, A., Jordán, A., Pereira, P., Novara, A., . . . Ritsema, C. J. (2016). Use of barley straw residues to avoid high erosion and runoff rates on persimmon plantations in eastern spain under low frequency-high magnitude simulated rainfall events. Soil Research, 54(2), 154-165. doi:10.1071/SR15092 Giménez-Morera, A., Ruiz Sinoga, J. D., & Cerdà, A. (2010). The impact of cotton geotextiles on soil and water losses from mediterranean rainfed agricultural land. Land Degradation and Development, 21(2), 210-217. doi:10.1002/ldr.971 Keesstra, S., Pereira, P., Novara, A., Brevik, E. C., Azorin-Molina, C., Parras-Alcántara, L., . . . Cerdà, A. (2016). Effects of soil management techniques on soil water erosion in apricot orchards. Science of the Total Environment, 551-552, 357-366. doi:10.1016/j.scitotenv.2016.01.182 Mwango, S. B., Msanya, B. M., Mtakwa, P. W., Kimaro, D. N., Deckers, J., & Poesen, J. (2016). Effectiveness OF mulching under miraba in controlling soil erosion, fertility restoration and crop yield in the usambara mountains, tanzania. Land Degradation and Development, 27(4), 1266-1275. doi:10.1002/ldr.2332 Nawaz, A., Farooq, M., Lal, R., Rehman, A., Hussain, T., & Nadeem, A. (2016). Influence of sesbania brown manuring and rice residue mulch on soil health, weeds and system productivity of conservation rice-wheat systems. Land Degradation and Development, doi:10.1002/ldr.2578 Nawaz, A., Lal, R., Shrestha, R. K., & Farooq, M. (2016). Mulching affects soil properties and greenhouse gas emissions under long-term no-till and plough-till systems in alfisol of central ohio. Land Degradation and Development, doi:10.1002/ldr.2553 Nishigaki, T., Shibata, M., Sugihara, S., Mvondo-Ze, A. D., Araki, S., & Funakawa, S. (2016). Effect of mulching with vegetative residues on soil water erosion and water balance in an oxisol cropped by cassava in east cameroon. Land Degradation and Development, doi:10.1002/ldr.2568 Ochoa-Cueva, P., Fries, A., Montesinos, P., Rodríguez-Díaz, J. A., & Boll, J. (2015). Spatial estimation of soil erosion risk by land-cover change in the andes OF southern ecuador. Land Degradation and Development, 26(6), 565-573. doi:10.1002/ldr.2219 Parras-Alcántara, L., Lozano-García, B., Keesstra, S., Cerdà, A., & Brevik, E. C. (2016). Long-term effects of soil management on ecosystem services and soil loss estimation in olive grove top soils. Science of the Total Environment, 571, 498-506. doi:10.1016/j.scitotenv.2016.07.016 Prosdocimi, M., Burguet, M., Di Prima, S., Sofia, G., Terol, E., Rodrigo Comino, J., . . . Tarolli, P. (2017). Rainfall simulation and structure-from-motion photogrammetry for the analysis of soil water erosion in mediterranean vineyards. Science of the Total Environment, 574, 204-215. doi:10.1016/j.scitotenv.2016.09.036 Prosdocimi, M., Cerdà, A., & Tarolli, P. (2016a). Soil water erosion on mediterranean vineyards: A review. Catena, 141, 1-21. doi:10.1016/j.catena.2016.02.010 Rodrigo Comino, J., Iserloh, T., Lassu, T., Cerdà, A., Keesstra, S. D., Prosdocimi, M., . . . Ries, J. B. (2016). Quantitative comparison of initial soil erosion processes and runoff generation in spanish and german vineyards. Science of the Total Environment, 565, 1165-1174. doi:10.1016/j.scitotenv.2016.05.163 Rodrigo Comino, J., Quiquerez, A., Follain, S., Raclot, D., Le Bissonnais, Y., Casalí, J., Giménez, R., Cerdà, A., Keesstra, S.D., Brevik, E.C., Pereira, P., Senciales, J.M., Seeger, M., Ruiz Sinoga, J.D., Ries, J.B., 2016. Soil erosion in sloping vineyards assessed by using botanical indicators and sediment collectors in the Ruwer-Mosel valley. Agriculture Ecosystems and Environment, 233, 158–170. DOI: 10.1016/j.agee.2016.09.009 Taguas, E. V., E. Guzmán, G. Guzmán, T. Vanwalleghem, and J. A. Gómez. 2015. Characteristics and Importance of Rill and Gully Erosion: A Case Study in a Small Catchment of a Marginal Olive Grove. Cuadernos De Investigacion Geografica 41 (1): 107-126. doi:10.18172/cig.2644. Van Eck, C. M., Nunes, J. P., Vieira, D. C. S., Keesstra, S., & Keizer, J. J. (2016). Physically-based modelling of the post-fire runoff response of a forest catchment in central portugal: Using field versus remote sensing based estimates of vegetation recovery. Land Degradation and Development, 27(5), 1535-1544. doi:10.1002/ldr.2507 van Hall, R. L., Cammeraat, L. H., Keesstra, S. D., & Zorn, M. (2017). Impact of secondary vegetation succession on soil quality in a humid mediterranean landscape. Catena, 149, 836-843. doi:10.1016/j.catena.2016.05.021 Zema, D. A., Denisi, P., Taguas Ruiz, E. V., Gómez, J. A., Bombino, G., & Fortugno, D. (2016). Evaluation of surface runoff prediction by AnnAGNPS model in a large mediterranean watershed covered by olive groves. Land Degradation and Development, 27(3), 811-822. doi:10.1002/ldr.2390